Sources of Magnetic Fields

Sources of electric field and magnetic field

From Coulomb's Law, a point charge $d q$ generates electric field distance \vec{r} away from the source:

$$
d \vec{E}=\frac{1}{4 \pi \varepsilon_{0}} \frac{d q}{r^{2}} \hat{r}
$$

From Biot-Savart's Law, a point current Id \vec{s} generates magnetic field distance \vec{r} away from the source:

$$
d \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{I d \vec{s}}{r^{2}} \times \hat{r}
$$

Difference:

1. A current segment $I d \vec{s}$, not a point charge $d q$, hence a vector.

2. Cross product of two vectors, $d \vec{B}$ is determined by the right-hand rule, not \vec{r}.

Total magnetic field

- $d \vec{B}$ is the field created by the current in the wire segment with length $d \vec{s}$, a vector that takes the direction of the current.
- To find the total field, sum up the contributions from all the current elements $I d \vec{s}$

$$
\vec{B}=\frac{\mu_{0}}{4 \pi} \int \frac{I d \vec{s} \times \hat{r}}{r^{2}}
$$

The integral goes over the entire current distribution

- $\mu_{o}=4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}$, is the constant, the permeability of free space

Example: a straight wire

- A thin, straight wire is carrying a constant current I
- Constructing the coordinate system and place the wire along the x-axis, and point P in the $x-y$ plane.
- $d \vec{s} \times \hat{r}=d x \sin \left(\frac{\pi}{2}-\theta\right) \hat{k}=d x \cos (\theta) \hat{k}$
- Integrating over all the current elements gives

$$
\begin{aligned}
& B=-\frac{\mu_{0} I}{4 \pi a} \int_{\theta_{1}}^{\theta_{2}} \cos (\theta) d \theta \\
& =\frac{\mu_{0} I}{4 \pi a}\left(\sin \theta_{1}-\sin \theta_{2}\right), \text { or } \vec{B}=B \hat{k}
\end{aligned}
$$

The math part

$$
\begin{aligned}
& d \vec{s} \times \hat{r}=d x \sin \left(\frac{\pi}{2}-\theta\right) \hat{k}=d x \cos \theta \hat{k} \\
& d \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{I d \vec{s}}{r^{2}} \times \hat{r}=\frac{\mu_{0} I}{4 \pi} \frac{\cos \theta}{(a / \cos \theta)^{2}} d x \hat{k} \\
& x=-a \tan \theta, \quad d x=-\frac{a d \theta}{\cos ^{2} \theta}
\end{aligned}
$$

$$
\begin{aligned}
& d B=-\frac{\mu_{0} I}{4 \pi a} \cos \theta d \theta, B=\int_{\theta_{1}}^{\theta_{2}} d B=-\frac{\mu_{0} I}{4 \pi a} \int_{\theta_{1}}^{\theta_{2}} \cos \theta d \theta=\frac{\mu_{0} I}{4 \pi a}\left(\sin \theta_{1}-\sin \theta_{2}\right) \\
& \vec{B}=B \hat{k}
\end{aligned}
$$

Now make the wire infinitely long

- The statement "the conductor is an infinitely long, straight wire" translates into:

$$
\theta_{1}=\pi / 2, \theta_{2}=-\pi / 2
$$

- Then the magnitude of the field becomes

$$
\begin{aligned}
& B=-\frac{\mu_{0} I}{4 \pi a} \int_{-\pi / 2}^{\pi / 2} \cos (\theta) d \theta \\
& =\frac{\mu_{0} I}{4 \pi a}\left(\sin \frac{\pi}{2}-\sin \frac{-\pi}{2}\right)=\frac{\mu_{0} I}{2 \pi a}
\end{aligned}
$$

- The direction of the field is determined by the right-hand rule: coming out of the page at the point P.

The magnetic field direction

- The magnetic field lines are circles concentric with the wire.
- The field lines lie in planes perpendicular to to wire
- The magnitude of the field is constant on any circle of a radius a.
- A different and more convenient right-hand rule for determining the direction of the field is shown.

Example: a circle of wire

- From Biot-Savart Law, the

 field at O from $I d \bar{s}$ is$d \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{I d \vec{s}}{r^{2}} \times \hat{r}=\frac{\mu_{0}}{4 \pi} \frac{I d s}{r^{2}} \vec{k}$,
$B=\frac{\mu_{0}}{4 \pi} \frac{I}{r^{2}} \int_{\text {full circle }} d s=\frac{\mu_{0}}{4 \pi} \frac{I}{r^{2}} 2 \pi r=\frac{\mu_{0} I}{2 r}$

- This is the field at the center of the loop

$$
B=\frac{\mu_{0} I}{2 a}, \text { or } \vec{B}=B \hat{k}
$$

Off center points of a single loop are not so easy to calculate.

How about a stack of loops?

Along the axis, yes, the formula is

$$
B=N \frac{\mu_{0} I}{2 r}, \text { or } \vec{B}=B \hat{k}
$$

N is the number of turns, r the radius.
When the loop is sufficiently long, what can we say about the field inside the body of this electric magnet?

We need Gauss's Law, Oops, a typo.
We need Ampere's Law. Sorry, Mr. Ampere.

Ampere's Law connects B with I

- Ampere's law states that the line integral of $\vec{B} \cdot d \vec{s}$ around any closed path equals $\mu_{0} I$ where I is the total steady current passing through any surface bounded by the closed path:

$$
\frac{\oint \vec{B} \cdot d \vec{s}=\mu_{0} I}{\left\{\begin{array}{l}
\text { This is a line integral } \\
\text { over a vector field }
\end{array}\right.}
$$

Use Ampere's Law: a straight wire

Choose the Gauss's Surface, oops, not again!
Choose the Ampere's loop, as a circle with radius a.
Ampere's Law says

$$
\oint \vec{B} \cdot \overrightarrow{d s}=\mu_{0} I
$$

\vec{B} is parallel with $d \vec{s}$, so

$$
\begin{aligned}
& B \oint d s=B 2 \pi a=\mu_{0} I \\
& B=\frac{\mu_{0} I}{2 \pi a}
\end{aligned}
$$

When the wire becomes a rod with radius R

- Outside of the wire, $r>R$ $\oint \vec{B} \cdot \vec{s}=B \cdot 2 \pi r=\mu_{0} I \rightarrow B=\frac{\mu_{0} I}{2 \pi r}$
- Inside the wire, we need I^{\prime}, the current inside the ampere's circle
$\oint \vec{B} \cdot d \vec{s}=B \cdot 2 \pi r=\mu_{0} I^{\prime} \rightarrow I^{\prime}=\frac{r^{2}}{R^{2}} I$

$$
B=\left(\frac{\mu_{0} I}{2 \pi R^{2}}\right) r
$$

Magnetic field of a toroid

- The toroid has N turns of wire
- Find the field at a point at distance r from the center of the toroid (loop 1)

$$
B \oint d s=B 2 \pi r=\mu_{0} N I
$$

$$
B=\frac{\mu_{0} N I}{2 \pi r}
$$

- There is no field outside the coil (see loop 2)

Magnetic field of a solenoid

- A solenoid is a long wire wound in the form of a helix.
- A reasonably uniform magnetic field can be produced in the space surrounded by the turns of the wire.
- The field lines in the interior are
- nearly parallel to each other
- uniformly distributed
- This is how people generate a uniform magnetic field.

Magnetic field of a tightly wound solenoid

- The field distribution is similar to that of a bar magnet.
- As the length of the solenoid increases:
- the interior field becomes more uniform.
- the exterior field becomes weaker.

Ideal (infinitely long) solenoid

- An ideal solenoid is approached when:
- the turns are closely spaced
- the length is much greater than the radius of the turns
- Apply Ampere's Law to loop 2:

$$
\oint \vec{B} \cdot d \vec{s}=\int_{\text {path } 1} \vec{B} \cdot d \vec{s}=B \int_{\text {path } 1} d s=B l
$$

$\oint \vec{B} \cdot \vec{s}=B l=\mu_{0} N I$
$B=\mu_{0} \frac{N}{l} I=\mu_{0} n I$

$n=N / \ell$ is the number of turns per unit length

Magnetic force between two parallel wires

- Two parallel wires each carry steady currents
- The field \vec{B}_{2} due to the current in wire 2 exerts a force on wire 1 of $F_{1}=I_{1} l B_{2}$
- Substituting the equation for gives

$$
F_{1}=\frac{\mu_{0} I_{1} I_{2}}{2 \pi a} l
$$

- Check with right-hand rule:
- same direction currents attract each other

- opposite directions currents repel each other
The force per unit length on the wire is $\frac{F_{B}}{l}=\frac{\mu_{0} I_{1} I_{2}}{2 \pi a}$
And this formula defines the current unit Ampere.

Definition of the Ampere and the Coulomb

- The force between two parallel wires is used to define the ampere.
- When the magnitude of the force per unit length between two long, parallel wires that carry identical currents and are separated by 1 m is $2 \times 10^{-7} \mathrm{~N} / \mathrm{m}$, the current in each wire is defined to be 1 A
- The SI unit of charge, the coulomb, is defined in terms of the ampere
- When a conductor carries a steady current of 1 A, the quantity of charge that flows through a cross section of the conductor in 1 second is 1 C

Magnetic Flux

- The magnetic flux over a surface area associated with a magnetic field is defined as

$$
\Phi_{B}=\int \vec{B} \cdot d \vec{A}
$$

- The unit of magnetic flux is

$$
\mathrm{T} \cdot \mathrm{~m}^{2}=\mathrm{Wb} \text { (weber) }
$$

Gauss' Law in Magnetism

- Magnetic fields do not begin or end at any point
The number of lines entering a surface equals the number of lines leaving the surface
- Gauss' law in magnetism says the magnetic flux through any closed surface is always zero:

$$
\oint \vec{B} \cdot d \vec{A}=0
$$

Example problem

A long, straight wire carries current I. A right-angle bend is made in the middle of the wire. The bend forms an arc of a circle of radius r. Determine the magnetic filed at the center of the arc.

Formula to use: Biot-Savart's Law, or more specifically the results from the discussed two examples:
For the straight section $B=\left.\frac{\mu_{0} I}{4 \pi r} \sin \theta\right|_{0} ^{\pi / 2}=\frac{\mu_{0} I}{4 \pi r}$
For the arc $B=\frac{\mu_{0} I}{4 \pi r^{2}} \int_{\frac{1}{4} \text { circle }} d s=\frac{\mu_{0} I}{4 \pi r^{2}} \frac{2 \pi r}{4}=\frac{\mu_{0} I}{8 r}$
The final answer: magnitude $B=\frac{\mu_{0} I}{4 \pi r}+\frac{\mu_{0} I}{8 r}+\frac{\mu_{0} I}{4 \pi r}=\frac{\mu_{0} I}{4 r}\left(\frac{2}{\pi}+\frac{1}{2}\right)$
direction pointing into the page.

Reading material and Homework assignment

Please watch this video (about 50 minutes each): http://videolectures.net/mit802s02 lewin lec14/

Please check wileyplus webpage for homework assignment.

