1. (30\%) A resistive metal wire has a diameter D and length L. When a potential difference ΔV is applied to both ends of the wire, it generates heat at a rate of P. Now cut the wire into two halves and pull one half into a new wire of a diameter $\frac{1}{2} D$. Connect this new wire back to the other half and apply the same potential difference ΔV. What is the rate of heat generated by the wire now? Ignore the resistivity change due to temperature of the wire.
2. (30%) Find the potential difference across R_{3}, when $R_{1}=3 \Omega, R_{2}=9 \Omega$, and $R_{3}=6 \Omega$.

3. (40%) The voltage source sends out a step pulse from 0 V to V_{0} at $t=0$. Sketch out the voltage over the resister R as a function of time t, and find the value of t when the voltage over this resister reads 50% of V_{0}.

V_{0}
$t=0$
