Particle Interaction with Matter

Electromagnetic interactions

- 1. Interactions of charged particles
- 2. Interaction of photon
- Strong interactions

Excitation and ionization

- Interaction with the bound electrons in the atoms of the matter
 - Incident particle much heavier than electron
 - Incident particle is electron
 - The Bethe-Bloch formula of dE/dx
 - Proportional to z^2
 - MIPs and relativistic rise
 - Use GEANT4 to produce Fig. 1.2

Fig. 1.2. Energy loss for electrons, muons, pions, protons, deuterons and α particles in air [14].

Channeling

 Excitation and ionization in a crystal (atoms on a regular lattice)

lonization yield

- Generated electron-hole (ion) pairs
- What is the take away from this section?

Multiple scattering

What is the take away from this section?

Bremsstrahlung

- Energy loss due to radiation produced in the strong electric field near a nucleus.
- The dE/dx ?
- Compare this with the Bethe-Bloch formula, what do you find?

Direct electron-pair production

What is this?

Photonuclear interaction

What is this?

Total energy loss

- All that go into dE/dx ?
- Can you reproduce Fig 1.7 with muon and electron? Discuss about each contribution's relative importance. Remember, electron and muon from Z decays at LEP are about 45 GeV

Fig. 1.7. Contributions to the energy loss of muons in iron [42].

Energy-range relationship

What is the take-away from this section?

Synchrotron radiation

- Other radiations:
 - Cerenkov radiation
 - Transition radiation
 - Synchrotron radiation
- Synchrotron radiation

Photon specific interactions

- Photoelectric effect
- Compton scattering
- Pair production
- Now add them up and use GEANT to reproduce Fig. 1.15

Fig. 1.15. Energy dependence of the mass attenuation coefficient μ and mass absorption coefficient $\mu_{\rm a}$ for photons in water [48, 56, 61, 62]. $\mu_{\rm ph}$ describes the photoelectric effect, $\mu_{\rm cs}$ the Compton scattering, $\mu_{\rm ca}$ the Compton absorption and $\mu_{\rm p}$ the pair production. $\mu_{\rm a}$ is the total mass absorption coefficient ($\mu_{\rm a} = \mu_{\rm ph} + \mu_{\rm p} + \mu_{\rm ca}$) and μ is the total mass attenuation coefficient ($\mu = \mu_{\rm ph} + \mu_{\rm p} + \mu_{\rm c}$, where $\mu_{\rm c} = \mu_{\rm cs} + \mu_{\rm ca}$).