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Introduction

There are many useful quantities in physics that have not just a magnitude but a direction associated with them. Indeed, the direction that a physics quantity points is as significant as its magnitude. Such quantities are called vectors and are added and subtracted together using special rules that are a bit more complicated than the familiar math rules used for everyday integers. That means that when you add two vectors of the same kind together you need to add them using a special technique. This experiment will familiarize you with the idea that a force is a vector quantity and, as such, can be “decomposed” into two mutually perpendicular component forces. An inclined plane will be used to demonstrate how one force vector, the weight, can be decomposed in this manner.

Simplified Theory

From lecture and from your reading, you should be somewhat familiar with the concept of vectors and scalars. One of the most important vector quantities in physics is the force vector F. Because a force is a vector, it obeys the laws of vector addition and subtraction. This implies s that if several forces are at work on some object, each pulling or pushing on the object from a different direction, then the net or resultant force can be determined simply by adding up the vectors representing the individual forces by the rules of vector addition. It is the net force that determines the direction and magnitude of the object’s acceleration.

An important law that physical objects obey is Newton’s First Law: the velocity of an object subject to a net force of zero will remain constant. This means that if an object is initially at rest (velocity of zero), and if no net force acts on this object, then it will remain at rest.

Consider as an example a person standing at rest on a table. The Earth’s gravity exerts a downward force on the person (called the person’s “weight”) as a result of the interaction of the Earth’s mass with the person’s mass. If Newton’s First Law is indeed true, how can this person remain at rest? The answer lies in the statement that the net force acting on the person must be zero. Some other force, of the same strength but acting in a direction opposite to the gravitational force, must be acting on the person so that the vector sum of the two forces, the net force, will be zero. 

Our person standing at rest on a tabletop is an example of a more common situation where some object is pressing on the surface of a rigid body, but is not accelerated either into or away from the surface. Since the object experiences no acceleration in a direction perpendicular to the surface, the net force on it that points in this particular direction must be zero. This implies that the rigid body is producing a force on the object which is of the same strength as the force causing the object to press against the rigid body but which is in the opposite direction. We call this force that the rigid body produces on the object, the so-called normal force. Here the adjective normal has a technical meaning and means perpendicular. (There are no “abnormal” forces.) Note in particular that the normal force is perpendicular to the contact surface between the object and the rigid body. For our example of the person standing on the table, the vector sum of the normal force acting on the person and the gravitational force acting on the person must sum to zero. If the sum were not zero, the person would accelerate through the table and hit the floor or in the opposite sense be repelled off the surface of the table and hit the ceiling.

Now we will consider the case of an object that is placed on an inclined plane, a flat (planar) surface that lies at some angle  with respect to level.
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What are the forces at work on this object? If we neglect the friction force, the only two forces are the weight of the object caused by the gravitational force and the normal force exerted by the plane on the object.
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On the left, the plane is shown with an inclination angle . The object’s weight is represented by the vector W, and the normal force by the vector N. As you can see from the diagram on the right, the vector addition of W and N gives a resultant force W||, which is in a direction parallel to the plane. In this sense, N can be considered as canceling the component of W perpendicular to the plane. W|| is the remaining component and is parallel to the plane.

Looking at the diagram on the right, we see that the vectors W, N, and W|| make a right triangle.
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This triangle is similar to the right triangle A-B-C made from the plane of inclination The angle between vectors W and N is also 
Now it is time to remember some simple trigonometry. Recall that the sine of an angle  in a right triangle is the ratio of the length of the side opposite to the angle and the length of the hypotenuse.  For the right triangle of the inclined plane, A-B-C, the sine of is defined as:

sin  =   EQ \F(opposite, hypotenuse)   =    EQ \F(BC,AC) 

We also know that for the inclined plane, the triangle made by the vectors W, N, and W||  is similar to the triangle A-B-C. Therefore, by the properties of similar triangles,

 EQ \F(BC,AC)  =  sin    =   EQ \F(|W|||,|W|) ,


where |W| = W , the weight of the object, and |W||| = W ||, the component of the weight parallel to the plane and which is sometimes called the downhill force. Thus, with a little manipulation, we get the equation for the inclined plane:

W ||   =  W  sin 



(1)


The magnitude of the resultant downhill force is the weight multiplied by the sine of the angle of inclination of the plane.

Below is a diagram of the apparatus we will be using.
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In the diagram to the left, we have an inclined plane of angle  On the inclined plane we have a rolling cart, which by means of string, pulley and mass m, is attached to a force T. T is parallel to the inclined plane and has magnitude mg.  This force is in the exact opposite direction from the downhill force W||.  If the mass m is adjusted such that mg and T are equal to W||, then all forces in the diagram will cancel and the cart will not accelerate. When the cart is at rest or has constant velocity, the following equation will be satisfied:
 W ||  =  T   = mg                    (2) 




Our objective is to test Equation (1) by means of Equation (2).
Procedure:
1.  Use the angle scale to set the angle of the inclined plane to 15°.
2.  Using slot weights, add a 200 grams or so to load to the cart.
3.  Determine the total mass of the cart and its load and record it on the lab form. Multiply the total mass by g  (the gravitational acceleration) to calculate the weight W.
4.  Tie the cord to the cart and pass the cord over the pulley and attach a weight hook to the cord.
5.  Add sufficient slot weights to the weight hook to achieve a rough balance. Adjust the pulley to make the cord parallel to the plane. This can be done by naked eye estimation or through the use of a ruler to make the cord equidistant from the plane.
6.  Using slot weights as small as 1 g, adjust the hanging weight so that the cart will move up the plane at a very slow constant speed. You would like to achieve zero acceleration.
7.  Record both the mass of the hanging material required to move the loaded cart up the plane and the angle of the plane. Multiply the value of the hanging mass by g to get the tension T, which is the magnitude of the string force T. Record T and   on the lab form.
8.  Repeat 6 and 7, only this time with the cart moving at a slow constant speed down the plane.

Note:  This process helps us to eliminate the effects of static and kinetic friction.
9.  Repeat 6, 7, and 8 for angles 25° and 40°.


Calculations:
For each angle, calculate the average tension (Tave) from the tension with upward motion (Tup) and the tension with downward motion (Tdown).

On diagrams similar to the one on the opposite page, draw in friction vectors for the cart moving up and moving down the ramp. Assume, since your cart rolled at the same constant speed both up and down, that the magnitude of the two friction vectors are equal. Here, friction acts in a direction opposite to motion. How would equation (2) be altered by the presence of friction, both up and down the ramp? (You will need this information for conclusion question 3.)

From the mass of the cart you should be able to calculate the weight (W), and the predicted downhill force at the different angles, W ||  = W sin  .


Conclusions:
1.  Write in your own words your results for this experiment. 

2.  What happens to the tension Tave as the angle is increased? Compare the experimental average tension with the theoretical resultant downhill force.  Do their values correspond? 

3.  Do you think friction plays any role in the experiment? If so, explain its significance. If not, then why not? Are you claiming there is no friction between the cart wheels and the inclined plane?

4. If you were to plot the tension versus the angle, what would the graph look like?


Error Analysis:
Why did we measure tension for the up-hill constant motion and downhill constant motion? Take the difference between Tup and Tdown and divide by two. What does this represent? Name some other sources for potential error and explain their relevance.
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