
PHYS 4211 Instrumentation HW 1.

TE Coan Fall '09

1. Redraw the circuit shown in Figure 1 so that it looks like the circuit shown in Figure 2. The functionality of both circuits must be identical. This means that the voltage drop across R_L should be the same in both circuits and that the current flowing through R_L should be the same in both circuits. Hence, express V_{th} and R_{th} in terms of V_0 and R_1 , R_2 . Figure 2 is called the Thévinin equivalent of Figure 1 and the general technique is used to reduce a potentially very complex circuit into a simpler one.

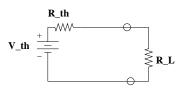


Figure 1: Original circuit.

Figure 2: Thévenin equivalent circuit.

- 2. Horowitz & Hill, problem 7, page 59.
- 3. Plot the frequency response (i.e., V_{out}/V_{in} versus f) characteristic of a high-pass RC filter for $R=10^6\,\Omega$ and $C=0.01\,\mu\text{F}$. Cover the frequency interval from two decades (a "decade" is a power of ten) below $f_{3\,\text{dB}}$ to two decades above it. Do not be afraid to use a plotting package like gnuplot. (Other plotting routines are fine.)