Spring 2008 TE Coan Due: 16 Apr '08, 6pm via email.

Homework 8

1. Sample the odd signal $k(t) = \sin(2\omega t) + 2\sin(3\omega t) + 5\sin(4\omega t)$, with $\omega = 2\pi f$. What are the ratios of the corresponding H_n for relevant values of n? (Write the ratios in a sensible way.) Are the relevant H_n real or imaginary? Include your answers in the answer file along with a plot of the H_n .

2. Sample the function $g(t) = \sin(2\pi ft)$ with f = 10.5 Hz at two different sampling frequencies, f_1 and f_2 . Use any number of total measurements you want but sample in two ways: f_1 should be *below* the Nyquist critical frequency f_c and f_2 should be *above*.

Compute the DFT of g(t) (using the clunky DFT routine) for both f_1 and f_2 . Recreate g(t) from the two DFTs corresponding to f_1 and f_2 . How well did you do? Now you see why paying attention to the Nyquist critical frequency is important. Include in your answer file: your values of f_1 and f_2 ; the plots of the two DFTs corresponding to f_1 and f_2 (indicate which plot goes with which sampling frequency); the plots for g(t) recreated from the DFTs.