PHYS 5382 Fall 2016 TE Coan Due: 21 Oct '16 6:00 pm

Homework 4

0. Box your **entire** answer for each problem or lose points.

1. Show that the operator \hat{C} defined through $[\hat{A}, \hat{B}] = i\hat{C}$ is hermitian if the operators \hat{A} and \hat{B} are. The result of problem 2.9 may be useful.

2. In lecture I claimed for the operators \hat{A}, \hat{B} and \hat{C} , that $[\hat{A}, \hat{B}\hat{C}] = \hat{B}[\hat{A}, \hat{C}] + [\hat{A}, \hat{B}]\hat{C}$. Verify this explicitly. Box your final answer.

3. A spin-1 particle is in the state

$$|\Psi\rangle \xrightarrow[S_z \text{basis}]{1} \frac{1}{\sqrt{14}} \begin{pmatrix} i\\ 2\\ 3i \end{pmatrix}.$$

What are the probabilities that a measurement of S_z will yield the values $\hbar, 0, -\hbar$ for this state? What is $\langle S_z \rangle$?

(b.) What is $\langle S_x \rangle$? Note that the matrix operator for S_x and J_x we saw in lecture are the same in this case since they both refer to spin.

(c.) **POSTPONED** What is the probability that a measurement of S_x will yield the value of \hbar for this state?

4. A bit of drill. Use the matrix representation of the spin- $\frac{1}{2}$ angular momentum operators \hat{S}_x , \hat{S}_y and \hat{S}_z in the S_z basis to verify explicitly through matrix multiplication that

$$[\hat{S}_x, \hat{S}_y] = i\hbar \hat{S}_z.$$

5. Determine the matrix representation of the spin- $\frac{1}{2}$ angular momentum operators \hat{S}_x , \hat{S}_y and \hat{S}_z using the eigenstates of \hat{S}_y as a basis. Note that the commutation relations among the various \hat{S} operators are independent of the basis you are working in. This can sometimes save you time.