PHYS 5382

Fall 2020
TE Coan
Due: 4 Sep '20 6:00 pm

Homework 1

1. You should know some basic facts about our Universe. You live in it. Box your answers.
a) 1 pt . What is the radius R_{a} of a typical atom? Use SI units (i.e., your answer should be in meters!). Yes, I have asked this question in my other courses as well.
b) 1 pt . What is the radius R_{N} of a typical atomic nucleus? Use SI units (i.e., your answer should be in meters!).
c) 1 pt. Estimate the number of atoms N_{B} in your body. Notice the word "estimate." Box your answer appropriately.
d) 1 pt . What is the value of Planck's constant divided by 2π, \hbar ? Use SI units. Your answer should in the form $\hbar=$ blah-blah-blah. Box the entire answer, not just the number.
e) $1 \mathbf{p t}$. What is the value of the electronic charge e ? Include the appropriate sign and SI unit. Box that answer. Really.
2. Later on, we shall see that the state of a spin $-\frac{1}{2}$ particle that is spin up along an axis whose direction is specified by the unit vector \mathbf{n}

$$
\mathbf{n}=\sin \theta \cos \phi \mathbf{i}+\sin \theta \sin \phi \mathbf{j}+\cos \theta \mathbf{k}
$$

with θ and ϕ shown in the figure below, is given by

$$
|+\mathbf{n}\rangle=\cos \frac{\theta}{2}|+\mathbf{z}\rangle+e^{i \phi} \sin \frac{\theta}{2}|-\mathbf{z}\rangle .
$$

(a) Verify that the state $|+\mathbf{n}\rangle$ reduces to the states $|+\mathbf{x}\rangle$ and $|+\mathbf{y}\rangle$ given in chapter 1 of Townsend for the appropriate choices of θ and ϕ.

(b) Suppose, suppose a measurement of S_{z} is carried out on a particle in the state $|+\mathbf{n}\rangle$. What is the probability that the measurement yields (i) $\hbar / 2$, (ii) $-\hbar / 2$?
(c) Determine the uncertainty ΔS_{z} in your measurement.

3a. This is a continuation of problem 2. What is the (probability) amplitude A to find a particle that is in the state $|+\mathbf{n}\rangle$ with $S_{y}=\hbar / 2$? What is the probability P ? Check your result by evaluating the probability for an appropriate choice of the angles θ and ϕ.
(b) Determine the amplitude A to find a particle in the state $|+\mathbf{y}\rangle$ with $S_{n}=\hbar / 2$.
4. The state $|\Psi\rangle$ described by

$$
|\Psi\rangle=\frac{1}{2}|+\mathbf{z}\rangle+\frac{i \sqrt{3}}{2}|-\mathbf{z}\rangle,
$$

is a state with $S_{n}=\hbar / 2$ along a particular axis \mathbf{n}. Compare the state $|\Psi\rangle$ with the state $|+\mathbf{n}\rangle$ in problem 2 above to find \mathbf{n}. Determine $\left\langle S_{x}\right\rangle,\left\langle S_{y}\right\rangle$, and $\left\langle S_{z}\right\rangle$. Note: $\left\langle S_{z}\right\rangle$ and $\left\langle S_{y}\right\rangle$ for this state are given in Townsend Example 1.2 and 1.3, respectively.
5. Calculate $\left\langle S_{x}\right\rangle,\left\langle S_{y}\right\rangle$ and $\left\langle S_{z}\right\rangle$ for the state

$$
|\Psi\rangle=-\frac{i}{2}|+\mathbf{z}\rangle+\frac{\sqrt{3}}{2}|-\mathbf{z}\rangle .
$$

Compare your results with those from problem 4. What can you conclude about these two states?
6. The state $|\Psi\rangle$

$$
|\Psi\rangle=\frac{1}{2}|+\mathbf{z}\rangle+\frac{\sqrt{3}}{2}|-\mathbf{z}\rangle .
$$

is similar to the one in problem 4. It is "missing" the i. By comparing the state with the state $|+\mathbf{n}\rangle$ in problem 2, determine along which direction \mathbf{n} the state is spin up. Calculate $\left\langle S_{x}\right\rangle,\left\langle S_{y}\right\rangle$ and $\left\langle S_{z}\right\rangle$ for the state $|\Psi\rangle$. Compare your results with those of Problem 4.

