PHYS 5382

Fall 2020
TE Coan
Due: 11 Sep '20 6:00 pm

Homework 2

1. Verify that $\Delta S_{y}=\sqrt{\left\langle S_{y}^{2}\right\rangle-\left\langle S_{y}\right\rangle^{2}}=0$ for the state $|+\mathbf{y}\rangle$.
2. Show explicitly that neither the probability of obtaining the result a_{i} nor the expectation value $\langle A\rangle$ is affected by $|\Psi\rangle \rightarrow e^{i \phi}|\Psi\rangle$, that is, by an overall phase change for the state $|\Psi\rangle$. This is an important general result for quantum mechanics.

3a. With some state $|\Psi\rangle$ of a spin- $\frac{1}{2}$ particle you measure S_{z} and find that 90% of the time you measure $S_{z}=\hbar / 2$. Furthermore, it is known there is a 20% chance of obtaining $S_{y}=\hbar / 2$ if you measure S_{y} for the same state. Determine the spin state of this particle as completely as possible from this information. Hint: You need to determine the relative phases between the kets $|+\mathbf{z}\rangle$ and $|-\mathbf{z}\rangle$ when you write $|\Psi\rangle$. See Townsend pp.18-19.
(b.) What is the probability of obtaining $S_{x}=\hbar / 2$ if a measurement of S_{x} is made?
4. Use Dirac notation (the properties of kets, bras and inner products) directly without explicitly using matrix representations to show that the projection operator \hat{P}_{+}is Hermitian. Hint: Place the operator \hat{P}_{+}between a bra and a ket, and then use what you know about complex conjugation and the "daggering" of an operator to demonstrate the desired result. A few lines should be enough.
(b.) Use the fact that $\hat{P}_{+}^{2}=\hat{P}_{+}$to demonstrate that the eigenvalues of the projection operator are 1 and 0 . Hint: Let $\hat{P}_{+}^{2}=\hat{P}_{+}$act on a ket and remember the general form of an eigenvalue equation.
5. Determine the column vectors representing the states $|+\mathbf{x}\rangle$ and $|-\mathbf{x}\rangle$ using the states $|+\mathbf{y}\rangle$ and $|-\mathbf{y}\rangle$ as a basis.

