PHYS 5382

Fall 2020
TE Coan
Due: 18 Sep '20 6:00 pm

Homework 3

1. We spent some time on commutation relations. Show that the operator \hat{C} defined through the commutation relation $[\hat{A}, \hat{B}]=i \hat{C}$ is Hermitian if \hat{A} and \hat{B} are.
2. We have seen raising and lowering operators act on kets $|j, m\rangle$ with arbitrary angular momentum j (subject only to the condition that j takes on values that are non-negative multiples of $\hbar / 2)$. Well, the spin states for our old friends the neutral Ag atom and the electron can also have raising and lowering operators act on them. So, using the familiar basis states $|+\mathbf{z}\rangle$ and $|-\mathbf{z}\rangle$, verify that for a spin- $\frac{1}{2}$ particle,
(a.)

$$
\hat{S}_{z}=(\hbar / 2)|+\mathbf{z}\rangle\langle+\mathbf{z}|-(\hbar / 2)|-\mathbf{z}\rangle\langle-\mathbf{z}|
$$

(b.) and that the raising and lowering operators \hat{S}_{+}and \hat{S}_{-}, respectively, satisfy

$$
\begin{aligned}
& \hat{S}_{+}=\hbar|+\mathbf{z}\rangle\langle-\mathbf{z}| \\
& \hat{S}_{-}=\hbar|-\mathbf{z}\rangle\langle+\mathbf{z}| .
\end{aligned}
$$

3. Determine the matrix representation of the rotation operator $\hat{R}(\phi \mathbf{k})$ using the states $|+\mathbf{z}\rangle$ and $|-\mathbf{z}\rangle$ as a basis.
(b.) Using your matrix representation, verify that the rotation operator is unitary, that is, it satisfies $\hat{R}^{\dagger}(\phi \mathbf{k}) \hat{R}(\phi \mathbf{k})=1$.
4. Determine the column vectors representing the states $|+\mathbf{x}\rangle$ and $|-\mathbf{x}\rangle$ using the states $|+\mathbf{y}\rangle$ and $|-\mathbf{y}\rangle$ as a basis.
5. Evaluate $\hat{R}(\theta \mathbf{j})|+\mathbf{z}\rangle$, where $\hat{R}(\theta \mathbf{j})=e^{-i \hat{J}_{y} \theta / \hbar}$ is the operator that rotates kets counterclockwise by an angle θ about the y axis. Then show that $\hat{R}\left(\frac{\pi}{2} \mathbf{j}\right)|+\mathbf{z}\rangle=|+\mathbf{x}\rangle$. Hint: Express the ket $|+\mathbf{z}\rangle$ as a superposition of the kets $|+\mathbf{y}\rangle$ and $|-\mathbf{y}\rangle$ and use the fact that $\hat{J}_{y}| \pm \mathbf{y}\rangle=(\pm \hbar / 2)| \pm \mathbf{y}\rangle$. Then, switch back to the $|\mathbf{z}\rangle,|-\mathbf{z}\rangle$ basis.
6. The column vector representing the state $|\Psi\rangle$ is given by

$$
|\Psi\rangle \underset{\mathrm{S}_{\mathrm{z}} \mathrm{basis}}{\longrightarrow} \frac{1}{\sqrt{5}}\binom{i}{2} .
$$

Using matrix mechanics, show that $|\Psi\rangle$ is properly normalized and calculate the probability that a measurement of S_{x} yields $\hbar / 2$.
(b.) Determine the probability that a measurement of S_{y} yields $\hbar / 2$.
6. Determine the matrix representation of \hat{J}_{x} in the S_{z} basis. Hint: Start with the matrix representation of the operator J_{x} using the states

$$
|+\mathbf{x}\rangle=\frac{1}{\sqrt{2}}|+\mathbf{z}\rangle+\frac{1}{\sqrt{2}}|-\mathbf{z}\rangle \quad|-\mathbf{x}\rangle=\frac{1}{\sqrt{2}}|+\mathbf{z}\rangle-\frac{1}{\sqrt{2}}|-\mathbf{z}\rangle
$$

as a basis and then transform to the S_{z} basis.

