PHYS 5382Fall 2020TE CoanDue: 18 Sep '20 6:00 pm

Homework 3

1. We spent some time on commutation relations. Show that the operator \hat{C} defined through the commutation relation $[\hat{A}, \hat{B}] = i\hat{C}$ is Hermitian if \hat{A} and \hat{B} are.

2. We have seen raising and lowering operators act on kets $|j,m\rangle$ with arbitrary angular momentum j (subject only to the condition that j takes on values that are non-negative multiples of $\hbar/2$). Well, the spin states for our old friends the neutral Ag atom and the electron can also have raising and lowering operators act on them. So, using the familiar basis states $|+\mathbf{z}\rangle$ and $|-\mathbf{z}\rangle$, verify that for a spin- $\frac{1}{2}$ particle,

(a.) $\hat{S}_{z} = (\hbar/2) |+\mathbf{z}\rangle \langle +\mathbf{z}| - (\hbar/2) |-\mathbf{z}\rangle \langle -\mathbf{z}|$

(b.) and that the raising and lowering operators \hat{S}_+ and \hat{S}_- , respectively, satisfy

$$\hat{S}_{+} = \hbar \ket{+\mathbf{z}} \langle -\mathbf{z} |$$
$$\hat{S}_{-} = \hbar \ket{-\mathbf{z}} \langle +\mathbf{z} |.$$

3. Determine the matrix representation of the rotation operator $\hat{R}(\phi \mathbf{k})$ using the states $|+\mathbf{z}\rangle$ and $|-\mathbf{z}\rangle$ as a basis.

(b.) Using your matrix representation, verify that the rotation operator is unitary, that is, it satisfies $\hat{R}^{\dagger}(\phi \mathbf{k})\hat{R}(\phi \mathbf{k}) = 1$.

4. Determine the column vectors representing the states $|+\mathbf{x}\rangle$ and $|-\mathbf{x}\rangle$ using the states $|+\mathbf{y}\rangle$ and $|-\mathbf{y}\rangle$ as a basis.

5. Evaluate $\hat{R}(\theta \mathbf{j}) |+\mathbf{z}\rangle$, where $\hat{R}(\theta \mathbf{j}) = e^{-i\hat{J}_y\theta/\hbar}$ is the operator that rotates kets counterclockwise by an angle θ about the y axis. Then show that $\hat{R}(\frac{\pi}{2}\mathbf{j}) |+\mathbf{z}\rangle = |+\mathbf{x}\rangle$. Hint: Express the ket $|+\mathbf{z}\rangle$ as a superposition of the kets $|+\mathbf{y}\rangle$ and $|-\mathbf{y}\rangle$ and use the fact that $\hat{J}_y |\pm \mathbf{y}\rangle = (\pm \hbar/2) |\pm \mathbf{y}\rangle$. Then, switch back to the $|\mathbf{z}\rangle, |-\mathbf{z}\rangle$ basis.

5. The column vector representing the state $|\Psi\rangle$ is given by

$$|\Psi\rangle \xrightarrow[\mathrm{S_zbasis}]{1} \frac{1}{\sqrt{5}} \left(\begin{array}{c} i\\2\end{array}\right).$$

Using matrix mechanics, show that $|\Psi\rangle$ is properly normalized and calculate the probability that a measurement of S_x yields $\hbar/2$.

(b.) Determine the probability that a measurement of S_y yields $\hbar/2$.

6. Determine the matrix representation of \hat{J}_x in the S_z basis. Hint: Start with the matrix representation of the operator J_x using the states

$$|+\mathbf{x}\rangle = \frac{1}{\sqrt{2}} |+\mathbf{z}\rangle + \frac{1}{\sqrt{2}} |-\mathbf{z}\rangle \qquad |-\mathbf{x}\rangle = \frac{1}{\sqrt{2}} |+\mathbf{z}\rangle - \frac{1}{\sqrt{2}} |-\mathbf{z}\rangle$$

as a basis and then transform to the ${\cal S}_z$ basis.