PHYS 5382

Fall 2020
TE Coan
Due: 25 Sep '20 6:00 pm

Homework 4

0. Box your entire final answer (not just its right hand side!) for each problem or lose points.
1. SKIP Show that the operator \hat{C} defined through $[\hat{A}, \hat{B}]=i \hat{C}$ is hermitian if the operators \hat{A} and \hat{B} are. The relation $(\hat{A} \hat{B})^{\dagger}=\hat{B}^{\dagger} \hat{A}^{\dagger}$ may be useful.
2. We have used many times a Taylor series expansion for expressions that contain an operator in the exponent. For example, we did this when investigating angular momentum when we treated the operator just like a variable from calculus. However, operators in exponents must be handled with care. For example, show that

$$
e^{\hat{A}+\hat{B}} \neq e^{\hat{A}} e^{\hat{B}}
$$

unless the operators \hat{A} and \hat{B} commute.
3. A spin- 1 particle is in the state

$$
|\Psi\rangle \underset{\mathrm{S}_{\mathrm{z}} \text { basis }}{\longrightarrow} \frac{1}{\sqrt{6}}\left(\begin{array}{c}
1 \\
2 i \\
i
\end{array}\right) .
$$

(a.) What is $\left\langle S_{y}\right\rangle$? Note that the matrix operator for S_{y} and J_{y} we saw in lecture are the same in this case since they both refer to spin.
(b.) What is the probability that a measurement of S_{y} will yield the value of $-\hbar$ for this state?
4. A bit of drill. Use the matrix representation of the spin- $\frac{1}{2}$ angular momentum operators \hat{S}_{x}, \hat{S}_{y} and \hat{S}_{z} in the S_{z} basis to verify explicitly through matrix multiplication that

$$
\left[\hat{S}_{x}, \hat{S}_{y}\right]=i \hbar \hat{S}_{z} .
$$

By the way, commutation relations are independent of the basis they are expressed in, as long as all the operators are expressed in the same basis.
5. A spin- $\frac{3}{2}$ particle is in the state

$$
|\Psi\rangle \underset{\mathrm{S}_{\mathrm{z}} \mathrm{basis}}{\longrightarrow} N\left(\begin{array}{c}
1 \\
2 \\
3 \\
4 i
\end{array}\right)
$$

(a.) Determine N so that $|\Psi\rangle$ is appropriately normalized.
(b.) What is $\left\langle S_{x}\right\rangle$ for this state? The matrix representation of \hat{S}_{x} can be found in Townsend in Example 3.4.
(c.) What is the probability P that measuring S_{x} for this state will yield a value of $-\hbar / 2$? You can use the following representations of the \hat{S}_{x} eigenstates $|s, m\rangle_{x}$ written in the S_{z} basis to help you.

$$
\begin{aligned}
& \left|\frac{3}{2}, \frac{3}{2}\right\rangle_{x} \underset{\mathrm{~S}_{z} \text { basis }}{\longrightarrow} \frac{1}{2 \sqrt{2}}\left(\begin{array}{c}
1 \\
\sqrt{3} \\
\sqrt{3} \\
1
\end{array}\right)
\end{aligned}\left|\frac{3}{2}, \frac{1}{2}\right\rangle_{x} \underset{\mathrm{~S}_{\mathrm{z}} \text { basis }}{\longrightarrow} \frac{1}{2 \sqrt{2}}\left(\begin{array}{c}
\sqrt{3} \\
1 \\
-1 \\
-\sqrt{3}
\end{array}\right)
$$

