Lecture 23 Review

FFT fun. octave introduction

Linear Algebra Highlights

Physics often requires solution of simultaneous linear equations.
 e.g., coupled oscillators, electrical circuits, ...

Set of equations of the form: Ax = b Solve for x, A & b given.

• Physics often requires solution of eiegnevectors & eigenvalues. e.g., normal modes, eigenfrequencies, bound energy states, Equations of the form: $Ax = \lambda x$ Solve for x, λ & A given.

> These are 2 different classes of problems to solve.

> Techniques are sophisticated. We will use canned software.

Solution of Linear Simultaneous Equations

Gaussian elimination. Easiest to understand.

$$2u + v + w = 1$$

$$4u + v = -2$$

$$-2u + 2v + w = 7$$

$$2u + v + w = 1$$

$$2u + v + w = -4$$

$$3v + 2w = 8$$

$$2u + v + w = 1$$

$$-1v - 2w = -4$$

$$-4w = -4$$

Count number of operations

- Forward elimination.
- Back substitution.

Where might this technique break down?

unique <

LU Decomposition

Write matrix A = LU i.e., factorize A, always OK if A has non-zero pivots

1	0	0	0
$lpha_{10}$	1	0	0
$lpha_{20}$	$lpha_{21}$	1	0
$lpha_{30}$	$lpha_{31}$	$lpha_{32}$	1

	a_{01}	a_{02}	a_{03} -
a_{10}	a_{11}	a_{12}	a_{13}
a_{20}	a_{21}	a_{22}	a_{23}
a_{30}	a_{31}	a_{32}	a_{33}

Ax = b = (LU)x = L(Ux) = b		
Ly = b	7	a way to proceed.
Ux = y	J	

pivots

 $y_0 = rac{b_0}{lpha_{00}}$

$$y_i = \frac{1}{\alpha_{ii}} \left[b_i - \sum_{j=0}^{i-1} \alpha_{ij} y_j \right] \quad i = 1, 2, \dots, N-1$$

$$x_{N-1} = \frac{y_{N-1}}{\beta_{N-1,N-1}}$$

$$x_i = \frac{1}{\beta_{ii}} \left[y_i - \sum_{j=I+1}^{N-1} \beta_{ij} x_j \right] \quad i = N-2, N-3, \dots, 0$$

L & U computed once per A

N³ steps.

LU Decomposition (2)

What to do if A has zero pivots?

If A has an inverse (i.e., is "non-singular"),

reorder rows of A beforehand to prevent zero pivots $A \rightarrow PA$ PA = LU

P = "permutation matrix" (reorders rows of A)

PAx = Pb has same solution x as Ax = b.

Exercise (from chemistry !):

 $\alpha O_2 + \beta C_4 H_9 N H_2 \rightarrow \gamma C O_2 + \delta H_2 0 + N_2$

Find correct stoichiometry (use octave to find α , β , γ , δ).

Octave notes

Ax = b

Define A in usual way. octave:3> a = [1,3,5; 1, 5, 6; 3, 7, 9] for example. octave:4> b = [2, 5,9]' for example. octave:4> x = a b

 $a \in a^{-1}$.

octave does NOT compute the inverse of a to solve for x.

<u>Many</u> variants to LU decomposition. These depend on structure of A: degree of symmetry, sparseness, ...

Summary

Gaussian elimination. LU decomposition

Don't suffer in silence. Scream for help!!!

