Lecture 8 Review

Binomial probability distribution

$$P_B(x; N, p) = \binom{N}{x} p^x q^{N-x} = \frac{N!}{x!(N-x)!} p^x (1-p)^{N-x}$$

 $\sigma^2 = Npq$ "variance." σ measures width of P_B.

Binomial Distribution Examples

gsl-randist 123 1000 binomial 0.5 50 | gsl-histogram 5 45 40

"pipe" symbol: directs output of one command to input of another.

TE Coan/SMU

Binomial Distribution Histogram via gnuplot

gnuplot> plot "histo.dat" using (\$1+0.5):(\$3) w lp

Poisson Probability Distribution

- Interesting case when $N \rightarrow \infty$, $p \rightarrow 0$, but N^*p = finite.
 - $P_B(x; N, p)$ describes prob of observing x events per unit time out of N possible, each of which has prob p of occurring.

$$\lim_{p \to 0} P_B(x; N, p) = P_P(x; \mu) \equiv \frac{\mu^x}{x!} e^{-\mu}$$

 μ = mean number of events per unit time

 $\sigma^2 = \mu$ (σ still characterizes width of probability distribution curve)

Q: Plot poisson distribution w/ μ = 3.5, 10,000 points Use piping, redirection and gnuplot. NO cut-and-paste !!!

Gaussian Probability Density Distribution

• Another interesting case when $N \rightarrow \infty$, $p \neq 0$, but $N^*p \gg 1$ Same case is obtained from $P_P(x; \mu)$ when $\mu \gg 1$

We obtain "gaussian" probability density distribution P_G

$$P_G(x;\sigma,\mu) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right]$$

 P_G is a continuous function. P_G dx is a probability (i.e., a pure number)

- $P_G dx$ is a probability of observing x between x and x + dx
- μ = mean value of x in parent distribution
- σ^2 characterizes variation about μ of parent distribution.

Q: Plot gaussian distribution w/ $\mu = 10.0$, $\sigma = 3.0$, 10,000 points Use piping, redirection and gnuplot. NO cut-and-paste !!! PHYS 3340:9 TE Coan/SMU

Probability Numbers from Probability Distributions

Often need to pick a random number
 from an arbitrary probability distribution P(x).

How to do this from uniform probability distribution p(r) btwn [0,1)?

 $p(r) = \left\{ egin{array}{c} 1 \ {
m for} \ 0 \leq 1 \ 0 \ {
m otherwise} \end{array}
ight.$

Conservation of probability: $|p(r)\Delta r| = |P(x)\Delta x|$

$$\int_{r=-\infty}^{r} p(r) \, dr = \int_{x=-\infty}^{x} P(x) \, dx$$

$$\int_{r=0}^{r} p(r) dr = \int_{x=-\infty}^{x} P(x) dx$$

$$r = \int_{x = -\infty}^{x} P(x) \, dx$$

Probability Numbers from Probability Distributions (2)

Fitting Data (first peek)

Need to fit curves to our data (i.e., fit a curve to a histogram)

Do this by minimizing the quantity χ^2

$$\chi^2 = \sum_{i=1}^N \left(\frac{y_i - y(x_i)}{\sigma_i}\right)^2$$

y_i is the y value from the <u>curve</u>.

 $y(x_i)$ is the y value from the <u>data</u> at a particular x_i .

 σ_i is the error on the y(xi). (Use sqrt(nmbr of bin counts) in a histogram.)

Example:

gnuplot> f1(x) = a1* sin(b1*x); a1 = 1.0; b1 = 0.3;gnuplot> fit f1(x) "trash.dat" using (\$1):(\$3) via a1 b1

Summary

Poisson and Gaussian probability distributions.

Pick random numbers from arbitrary probability distribution.

First peek at fitting data.

Don't suffer in silence. Scream for help!!!

