
Lecture 9 Review

Poisson and Gaussian probability distributions.

Pick random numbers from arbitrary probability distribution.

First peek at fitting data.

PHYS 3340:10 TE Coan/SMU

First peek at fitting data.

Lecture 9 Review

Poisson and Gaussian probability distributions.

Pick random numbers from arbitrary probability distribution.

TE Coan/SMU 1

Numerical Derivatives

We need to know to to take a derivative df(x)/dx of a function f(x) at x.

f ′(x) ≡ limh→0
f(x+h)−f(x)

h

Taylor series expand f(x + h). Recall that h << 1:

f(x+ h) = f(x) + hf ′(x) +

PHYS 3340:10 TE Coan/SMU

f(x+ h) = f(x) + hf ′(x) +

f ′(x) = f(x+h)−f(x)
h −

h
2 f

′′

f ′c(x) �
f(x+h)−f(x)

h

“forward derivative”

Numerical Derivatives

We need to know to to take a derivative df(x)/dx of a function f(x) at x.

)

Taylor series expand f(x + h). Recall that h << 1:

+ h2

2 f
′′(x) + . . .

(from calculus land)

TE Coan/SMU 2

+ h2

2 f
′′(ζ) (exact, also from calculus)

ζ unknown !! (x ≤ ζ ≤ x + h)
′(ζ)

“truncation error”

Forward Derivative

f ′c(x) �
f(x

f(x)

PHYS 3340:10 TE Coan/SMU

Not too bad (truncation error ∝

Forward Derivative

x+h)−f(x)
h

TE Coan/SMU 3

h), but we can do better.

Central Difference Derivative

Use alternative, but entirely equivalent, definition of df(x)/dx at x.

f ′(x) ≡ limh→0
f(x+h/2)−f(

h

Taylor series expand f(x + h/2):

f(x+ h/2) = f(x) + h
2 f

′(x)

and f(x - h/2):

PHYS 3340:10 TE Coan/SMU

f ′(x) = f(x+h/2)−f(x−h/2)
h −

f ′c(x) �
f(x+h/2)−f(x−h/2)

h

“central difference derivative”

and f(x - h/2):

f(x− h/2) = f(x)− h
2 f

′(x)

Central Difference Derivative

Use alternative, but entirely equivalent, definition of df(x)/dx at x.

(x−h/2)

) + h2

8 f
′′(x) + h3

48 f
′′′(x) + . . .

TE Coan/SMU 4

−
h2

24 f
′′′(ζ)

) + h2

8 f
′′(x)− h3

48 f
′′′(x) + . . .

Our workhorse derivative

Truncation error ∝ h2

Central Difference Derivative (2)

f(x)

f ′c(x) �
f(x+h/2)−

h

PHYS 3340:10 TE Coan/SMU

Again, our workhorse (truncation error

Central Difference Derivative (2)

−f(x−h/2)
h

TE Coan/SMU 5

Again, our workhorse (truncation error ∝ h2)

GSL Routine (see derivative.cc)

#include <iostream>

#include <iomanip>

#include <gsl/gsl_math.h>

#include <gsl/gsl_deriv.h>

using namespace std;

double f (double x, void * params)

{

return pow (x, 1.5); // <----- CHANGE ME

PHYS 3340:10 TE Coan/SMU

return pow (x, 1.5); // <----- CHANGE ME

}

int main ()

{

gsl_function F;

double result, abserr;

F.function = &f; // no touch

F.params = 0; // no touch

GSL Routine (see derivative.cc)

cout << "f(x) = x^(3/2)" << endl;

gsl_deriv_central (&F, 2.0, 1e-8,

&result, &abserr);

cout << "x = 2.0" << endl;

cout << "f'(x) = " <<

setprecision(11)<< result << " +/- "

<< abserr << endl;

cout << "exact = " <<

setprecision(11) << 1.5 * sqrt(2.0)

<< endl << endl;

h

x

TE Coan/SMU 6

<< endl << endl;

gsl_deriv_forward (&F, 0.0, 1e-8,

&result, &abserr);

printf ("x = 0.0\n");

printf ("f'(x) = %.10f +/- %.10f\n",

result, abserr);

printf ("exact = %.10f\n", 0.0);

return 0;

}

Runge-Kutta (2

dy
dt
= f(t, y)⇒

yn+1 = yn+
∫
tDiscretizing,

We need a technique to solve ordinary differential equations (ODEs)

Formally,

n n + 1 n + 2

h

An ODE has one independent variable.

PHYS 3340:10 TE Coan/SMU

f(t, y) � f(tn+1

2

, yn+

Substitute last equation into 2nd and take note,

Approximately,

∫ tn+1
tn

f(t, y) � f(tn+1

2

, yn+1

2

)h+O(h3)

⇒ yn+1 � +yn+ f(tn+1

2

, yn+1

2

)h+O(

n n + 2

Kutta (2nd order)

⇒ y(t) =
∫
f(t, y)dt

∫ tn+1
tn

f(t, y)dt

We need a technique to solve ordinary differential equations (ODEs)

t
h

variable.

TE Coan/SMU 7

+1

2
) + (t− tn+1

2
)df
dt
(tn+ 1

2
) +O(h2)

and take note,

∫ tn+1
tn
(t− tn+1

2

)dt =
(t−tn+1

2
)2

2

∣∣∣∣
tn+1

tn
= 0

(h3) So far, so good but …

2nd order RK (2)

yn+1 � +yn+ f(tn+1

2
, yn+1

2
)h+

… we don’t know what yn+1/2

We only calculate quantities at t

Noooo. Approximation to the rescue.

Dead end?

PHYS 3340:10 TE Coan/SMU

yn+1

2

� yn+
dy
dt
h
2

� yn+
1
2
hf(tn, yn)

�yn+1 � yn+ �k2
�k2 = h�f(tn+

h
2
, �yn+ �k1

�k1 = h�f(tn, �yn)

Looks complicated. Looks can be deceiving.

order RK (2)

O(h3)

n+1/2 is.

We only calculate quantities at tn, tn+1, … to get f(tn, yn).

Noooo. Approximation to the rescue.

TE Coan/SMU 8

1/2) “2nd order Runge - Kutta” algorithm

for ODE solution.

Looks complicated. Looks can be deceiving.

Solving ODEs

d�y(t)
dt

= �f(t, �y)

Write ODE in standard format.

y(0)(t)
y(1)(t)

y and f are N-dimensional vectors.

The idea is to express any order ODE as N simultaneous 1

PHYS 3340:10 TE Coan/SMU

�y =

y(1)(t)
...

y(N−1)(t)

�f =

dy(0)(t)
dt

= f (0)(t, �y)

dy(1)(t)
dt

= f (1)(t, �y)

Solving ODEs

Write ODE in standard format.

dimensional vectors.

ODE as N simultaneous 1st order ODEs

f (0)(t, �y)
f (1)(t, �y)

TE Coan/SMU 9

=

f (1)(t, �y)
...

f (N−1)(t, �y)

No y-derivatives

Solving ODEs (2)

d2x/dt2 = F (t,

Consider Newton’s 2nd law in 1 dimension.

Write in standard form.

dx/dt = dy(0)/

y(0)(t) ≡ x(t)

So,

1st step

PHYS 3340:10 TE Coan/SMU

dy(0)/dt ≡ y(1)

dy(1)/dt = F (t

f (0) = y(1)(t)

f (1) = F (t, y(0)

So,

Equations in vector form

Solving ODEs (2)

, x, dx/dt)

law in 1 dimension.

/dt ≡ y(1) 2nd step

TE Coan/SMU 10

t, y(0), y(1))

0), y(1))

Example Solution of an ODE

m d2x/dt2 = −k

d2x/dt2 = −
k
m
x

y(0)(t) = x(t)

dy(0)

dt
= f (0) = y(

Hooke’s law:

1st step

2nd step

PHYS 3340:10 TE Coan/SMU

d2x
dt2
= d

dt
(dy

(0)

dt
) =

d
dt
y(1)(t) = −

k
m
x

f (1) = −
k
m
x

Example Solution of an ODE

kx

(1)

TE Coan/SMU 11

= −
k
m
x

x

d�y(t)
dt

= �f(t, �y)

dy(0)

dt
= y(1)

dy(1)

dt
= −

k
m
y(0)

Preferred Algorithm for ODE Solution

4th-order Runge-Kutta algorithm

�yn+1 � yn+
1
6
(�k1+2�k2+2�k

�k1 = h�f(tn, �yn)

�k2 = h�f(tn+
h
2
, �yn+

�k1
2
)

PHYS 3340:10 TE Coan/SMU

�k3 = h�f(tn+
h
2
, �yn+

�k2
2
)

�k4 = h�f(tn+ h, �yn+ �k3)

YIKES !!

Preferred Algorithm for ODE Solution

�k3+ �k4) term of O(h4) neglected

h is step size in t, h < 1

t is independent variable

TE Coan/SMU 12

Summary

Numerical derivatives: forward and central difference.

ODE solver: 4th order Runge

PHYS 3340:10 TE Coan/SMU

Don’t suffer in silence. Scream for help!!!

Summary

Numerical derivatives: forward and central difference.

ODE solver: 4th order Runge-Kutta

TE Coan/SMU 13

Don’t suffer in silence. Scream for help!!!

PHYS 3340:10 TE Coan/SMUTE Coan/SMU 14

