Lecture 13 Review

How to use multiple parameters in an ODE. (vdpol.cc)

C++ struct structure

Intro to the logistic map

$$x_{i+1} = \mu x_i (1 - x_i)$$

Chaotic Pendulum

Examine phase space plots (dx/dt v. x) for driven, damped pendulum.

$$\tau_g + \tau_f + \tau_{ext} = I \frac{d^2 \theta}{dt^2}$$
$$-\frac{mgl}{I} \sin \theta - \frac{\beta}{I} \frac{d\theta}{dt} + \frac{\tau_0}{I} \cos \omega t = \frac{d^2 \theta}{dt^2}$$
$$\frac{d^2 \theta}{dt^2} = -\omega_0^2 \sin \theta - \alpha \frac{d\theta}{dt} + f \cos \omega t$$

Verify oscillation of free, undamped pendulum.

Plot $\theta(t)$ v. t; Plot $d\theta/dt$ v. θ . Choose $\omega_0^2 = 1$ rad/sec² Similar to HW.

Chaotic Pendulum (2)

Examine phase space plots (dx/dt v. x) for driven pendulum

$$rac{d^2 heta}{dt^2} = -\omega_0^2 \sin heta - lpha rac{d heta}{dt} + f \cos \omega t$$

• Consider damped pendulum (f =0.) Plot $\theta(t)$ v. t; Plot $d\theta/dt$ v. θ . Plot $\theta(t)$ v. t; Plot $d\theta/dt$ v. θ . Choose $\omega_0^2 = 1$ rad/sec² Choose $\alpha = 0.2$ /sec

• Consider damped and driven pendulum. Plot $\theta(t)$ v. t; Plot $d\theta/dt$ v. θ . Choose $\omega_0^2 = 1$ Choose f = 0.52 Choose $\alpha = 0.2$ Choose $\omega = 0.666$

 $(x_0, v_0) = (-0.0885, 0.8)$ $(x_0, v_0) = (-0.0883, 0.8)$ $(x_0, v_0) = (-0.0888, 0.8)$

Chaotic Pendulum (3)

Chaos Identification (Qualitative)

- Chaotic motion is motion w/o any apparent regularity.
- Chaotic motion is NOT random motion.
- Random motion means you cannot predict future motion from present, even in principle.
- > However, relevant chaotic ODE tells you how to get from present to future.
- > IF you start w/ identical ICs, you always get the same final state.
- It is extreme sensitivity of a chaotic ODE to initial conditions that makes <u>practical</u> prediction of <u>far</u> future motion impossible.
- > Change ICs slightly for chaotic system, very different final state.

Consider the example of the logistic map.

Chaos Identification (2)

$$\begin{aligned} x_{N+1} &= \alpha x_N (1 - x_N) \\ \text{Set } \alpha &= 4.0 \\ \text{Pick } x_1 &= 0.700\ 000\ 000 \\ &= 0.700\ 000\ 001 \end{aligned} \text{ two different ICs} \\ \text{(float v. double ...)} \end{aligned}$$

Find iteration N where the 2 solutions have clearly diverged. N = ??

Chaos Identification (3)

$x_{N+1} = \alpha x_N (1 - x_N)$

Suppose <u>difference</u> between 2 sols, Δ , <u>doubles</u> every iteration.

After N iterations: $\Delta = 2^N = e^{N \ln 2}$ For final $\Delta \sim 1$: $2^N 10^{-8} \sim 1$ $\Rightarrow N = 27$ Starting difference between ICs

Consider 2 initial states:

al states:
$$x_0$$

 $x_0 + \varepsilon$ $\varepsilon << 1$
 $\Delta_N = x_N^{(1)} - x_N^{(2)}$ Lyapunov exponent.
 $\Delta_N = \epsilon e^{N\lambda}$
Exponential growth in solution difference Δ if $\lambda > 0$.

Fractals (Play Time)

Let's try to make it. (Actually not so hard.) See sierpin.cc

Sierpinski's Gasket Algorithm

- Draw equilateral triangle and label vertices (1,2,3).
- Randomly pick a single point P_0 inside triangle.
- Randomly pick an integer from {1,2,3}.
- Place 2nd point halfway between P₀ and vertex from previous step.
- Call this new point P₀ and repeat last 3 steps.

$$(x_{k+1}, y_{k+1}) = \frac{(x_k, y_k) + (Vx_n, Vy_n)}{2}$$

$$n = \text{integer} \left(1 + 3r_i\right)$$

See sierpin.cc

N

Typical Fractal Properties

Fractal: "shape made of parts similar to the whole"

Typical fractal F properties:

F has structure at arbitrarily small scales.F is self-similar. (NB: Not <u>all</u> fractals self-similar.)F has <u>non-integral</u> dimension (say what?).

Sierpinski gasket has all 3 properties.

Some Other (Self-Similar) Fractals

PHYS 3340:14

Dimension of Self-Similar Fractals

Q: What do you mean by "dimension"?

- Maybe, number of numbers required to specify location of a point?
- Works OK for line segment and planar shapes. So far, so good.
- > Concept fails spectacularly for Koch curve K.

K has infinite arc length!

Dimension of Self-Similar Fractals (2)

Q: What do you mean by "dimension"?

Examine simple, self-similar structures.

"similarity" dimension.

Dimension of Koch Curve K

Apply this definition of dimension to K.

Compare S_2 with S_1 :

- > S_1 reduced by a factor of 3.
- > 4 such identical segments span S_1 .

 $\Rightarrow \begin{array}{cc} r &= 3 \\ m &= 4 \end{array}$

$$d = \frac{\ln m}{\ln r} = \frac{\ln 4}{\ln 3} = 1.26$$

Dimension of Cantor Set C

Compare S_2 with S_1 :

- > S₁ reduced by a factor of 3.
- > 2 such identical segments span S_1 .

$$\Rightarrow \begin{array}{l} r &= 3\\ m &= 2 \end{array}$$
$$d = \frac{\ln m}{\ln r} = \frac{\ln 2}{\ln 3} = 0.63$$

Summary

Chaos Intro w/ driven, damped pendulum.

Chaos ID and Lyapunov exponent

First look at simple fractals

Fractal dimension

Don't suffer in silence. Scream for help!!!

