
Lecture 13 Review

Intro to the logistic map xi+1 = µx

How to use multiple parameters in an ODE. (vdpol.cc)

C++ struct structure
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Lecture 13 Review

xi(1− xi)

How to use multiple parameters in an ODE. (vdpol.cc)
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Chaotic Pendulum

Examine phase space plots  (dx/dt v. x) for 

τg + τf + τext = I d
2θ
dt2

−
mgl

I
sin θ − β

I
dθ
dt
+ τ0

I
cosω

d2θ
dt2
= −ω20 sin θ − α

dθ
dt
+ f c
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Verify oscillation of free, undamped pendulum. 

Similar to HW.

Choose  ω0
2

Plot θ(t) v. t;  

Plot  dθ/dt v. θ.

Pendulum

Examine phase space plots  (dx/dt v. x) for driven, damped pendulum.

ωt = d2θ
dt2

cosωt

θ
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Verify oscillation of free, undamped pendulum. 

= 1 rad/sec2



Chaotic Pendulum (2)

Examine phase space plots  (dx/dt v. x) for driven pendulum

d2θ
dt2
= −ω20 sin θ − α

dθ
dt
+ f

� Consider damped pendulum (f =0.) Plot 

Plot θ(t) v. t; Plot  dθ/dt v. θ.
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� Consider damped and driven pendulum.

Plot θ(t) v. t; Plot  dθ/dt v. θ.

Choose ω0
2 = 1 rad/sec2

Choose α = 0.2 /sec

Plot θ(t) v. t; Plot  dθ/dt v. θ.

Choose ω0
2 = 1

Choose α = 0.2

Choose f = 0.52

Choose ω = 0.666 

Chaotic Pendulum (2)

Examine phase space plots  (dx/dt v. x) for driven pendulum

cosωt

θ

Consider damped pendulum (f =0.) Plot θ(t) v. t; Plot  dθ/dt v. θ.
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Consider damped and driven pendulum.

= 0.52

= 0.666 

(x0, v0) = (-0.0885,0.8)

(x0, v0) = (-0.0883,0.8)

(x0, v0) = (-0.0888,0.8)



Chaotic Pendulum (3)
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Chaotic Pendulum (3)
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� Chaotic motion is motion w/o any apparent regularity.

� Chaotic motion is NOT random motion.

� Random motion means you canno

� However, relevant chaotic ODE tells you how to get from present to future.

even in principle.

Chaos Identification (Qualitative)
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However, relevant chaotic ODE tells you how to get from present to future.

� It is extreme sensitivity of a chaotic ODE to initial conditions

that makes practical prediction of far

Consider the example of the logistic map.

� IF you start w/ identical ICs, you always

� Change ICs slightly for chaotic system, very different final state.

motion is motion w/o any apparent regularity.

Chaotic motion is NOT random motion.

not predict future motion from present,             

ODE tells you how to get from present to future.

Identification (Qualitative)

TE Coan/SMU 5

ODE tells you how to get from present to future.

It is extreme sensitivity of a chaotic ODE to initial conditions

far future motion impossible.

Consider the example of the logistic map.

always get the same final state.

Change ICs slightly for chaotic system, very different final state.



Chaos Identification (2)

xN+1 = αxN(1− xN)

Set α = 4.0

Pick x1 = 0.700 000 000

= 0.700 000 001
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Find iteration N where the 2 solutions have clearly diverged.

N = ??

Chaos Identification (2)

two different ICs

(float v. double … )
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Find iteration N where the 2 solutions have clearly diverged.



Chaos Identification (3)

Suppose difference between 2 sols, ∆, doubles

xN+1 = αxN(1− xN)

After N iterations: ∆= 2N = eN ln 2

For final ∆ ~ 1: 2N 10−8 ∼ 1

⇒ N = 27
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Consider 2 initial states: x0

x0 + ε ε

∆N = x
(1)
N

∆N = εeN

Exponential growth in solution 

Chaos Identification (3)

doubles every iteration.

Starting difference between ICs

TE Coan/SMU 7

ε << 1

)
− x

(2)
N

Nλ

Exponential growth in solution difference ∆ if λ > 0.

Lyapunov exponent.



Fractals (Play Time)
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Let’s try to make it. (Actually not so hard.)

See sierpin.cc

Fractals (Play Time)
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Let’s try to make it. (Actually not so hard.)



� Draw equilateral triangle and label vertices (1,2,3).

Sierpinski’s Gasket Algorithm

� Randomly pick a single point P0 inside triangle.
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� Randomly pick a single point P0 inside triangle.

� Randomly pick an integer from {1,2,3}.

� Place 2nd point halfway between P0

� Call this new point P0 and repeat last 3 steps.

See sierpin.cc

N

(xk+1, yk+1) =
(xk,yk)+(V xn,V yn)

2

Draw equilateral triangle and label vertices (1,2,3).

Sierpinski’s Gasket Algorithm

inside triangle.
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inside triangle.

pick an integer from {1,2,3}.

and vertex from previous step.

and repeat last 3 steps.

See sierpin.cc

) n = integer (1 + 3ri)



Fractal:  “shape made of parts similar to the whole”

Typical Fractal Properties
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F has structure at arbitrarily small scales.

F is self-similar. (NB: Not 

F has non-integral dimension (say what?).

Sierpinski gasket has all 3 properties.

Typical fractal F properties:

Fractal:  “shape made of parts similar to the whole”

Typical Fractal Properties
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has structure at arbitrarily small scales.

similar. (NB: Not all fractals self-similar.)

dimension (say what?).

Sierpinski gasket has all 3 properties.



Cantor Set:

Some Other (Self-
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Koch Curve:

Some Other (Self-Similar) Fractals
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Q: What do you mean by “dimension”?

Dimension of Self

� Maybe, number of numbers required to specify location of a point?

� Works OK for line segment and planar shapes. So far, so good.

� Concept fails spectacularly for Koch curve K.

K has infinite arc length!

L0 ∼ S0
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L0 ∼ S0

L1 ∼ S1

L1 =
4
3
L0

L2 =
4
3
L1 = (4

3
)2L0

...

Ln = (4
3
)nL0 →∞ as n→∞

Dimension of Self-Similar Fractals

Maybe, number of numbers required to specify location of a point?

Works OK for line segment and planar shapes. So far, so good.

Concept fails spectacularly for Koch curve K.
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Q: What do you mean by “dimension”?

Dimension of Self-Similar Fractals (2)

Examine simple, self-similar structures.

m = 4
r = 2
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d =

m =

m = 8
r = 2

Similar Fractals (2)

similar structures.

m = 9
r = 3
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= lnm
ln r

= rd

“similarity” dimension.



Apply this definition of dimension to K.

Dimension of Koch Curve K

Compare S2 with S1:

� S1 reduced by a factor of 3.

� 4 such identical segments span S1.

r = 3
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⇒
r = 3
m = 4

d = lnm
ln r

= ln 4
ln 3

= 1.26

Dimension of Koch Curve K

d = lnm
ln r

a

a/3 a/3b
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b/3



Apply our definition of dimension.

Dimension of Cantor Set C
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Compare S2 with S1:

� S1 reduced by a factor of 3.

� 2 such identical segments span S

⇒
r = 3

m = 2

d =
lnm

ln r
=

ln 2

ln 3

Apply our definition of dimension.

Dimension of Cantor Set C

d =
lnm

ln r

a

a/3 a/3b
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b/3

reduced by a factor of 3.

2 such identical segments span S1.

= 0.63



Summary

Chaos ID and Lyapunov exponent

First look at  simple fractals

Chaos Intro w/ driven, damped pendulum.
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Don’t suffer in silence. Scream for help!!!

Fractal dimension

Summary

Chaos ID and Lyapunov exponent

simple fractals

Chaos Intro w/ driven, damped pendulum.
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Don’t suffer in silence. Scream for help!!!
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