Chaos ID and Lyapunov exponent

Introduction to fractals (examples and simple properties)
Q: What is dimension of Sierpinski’s gasket?

\[d = \frac{\ln m}{\ln r} \]

- \(r = ? \)
- \(m = ? \)
- \(d = ? \)
Affine Transformations

Self-similar fractals are generated from *affine transformations*:

A mapping of one set of points into another using a linear transformation + translation.

\[x' = Ax + b \]

Translation.

Scaling, shearing or rotation.

S’ski gasket: \((x_{k+1}, y_{k+1}) = (x_k, y_k) + (Vx_n, Vy_n) / 2\)

Scaling \(\leftrightarrow\) Translation

\(n = \text{integer}(1 + 3r_i)\)
Another (Iterative) Affine Transformation

Barnsley's fern is a fractal. See fern.cc

\[(x, y)_{n+1} = \begin{cases}
(0.5, 0.27y_n) & r < 0.2 \\
(-0.139x_n + 0.263y_n + 0.57, 0.246x_n + 0.224y_n - 0.036) & 0.02 \leq r \leq 0.17 \\
(0.17x_n - 0.215y_n + 0.408, 0.222x_n + 0.176y_n + 0.0893) & 0.17 < r \leq 0.3 \\
(0.781x_n + 0.034y_n + 0.1075, -0.032x_n + 0.739y_n + 0.27) & 0.3 < r < 1.0
\end{cases}\]
Lab Exercise: Grow a Tree

Iteratively (but randomly) select the following affine transformations

\[(x_{n+1}, y_{n+1}) = \begin{cases}
(0.05 \, x_n, 0.6 \, y_n) & 10\% \text{ probability} \\
(0.05 \, x_n, -0.5 \, y_n + 1.0) & 10\% \text{ probability} \\
(0.46 \, x_n - 0.15 \, y_n, 0.39 \, x_n + 0.38 \, y_n + 0.6) & 20\% \text{ probability} \\
(0.47 \, x_n - 0.15 \, y_n, 0.17 \, x_n + 0.42 \, y_n + 1.1) & 20\% \text{ probability} \\
(0.43 \, x_n + 0.28 \, y_n, -0.25 \, x_n + 0.45 \, y_n + 1.0) & 20\% \text{ probability} \\
(0.42 \, x_n + 0.26 \, y_n, -0.35 \, x_n + 0.31 \, y_n + 0.7) & 20\% \text{ probability}
\end{cases} \]

Use fern.cc as a guide.

You can “plant” the tree at \((x_0, y_0) = (0.5, 0.0)\).
Often need to find roots (zeroes) to equations, i.e., solve $f(x) = 0$.

Consider case of only 1 independent variable.

Two general techniques: Newton-Raphson and Bisection.

$$f(x^*) = 0 \quad (x^* \text{ is a true root})$$

Taylor series expand $f(x)$ around x^*

$$x^* = x_0 + \delta x$$

$$f(x^*) = f(x_0) + \delta x f'(x_0) + \frac{1}{2} (\delta x)^2 f''(x_0) + \cdots$$

$$0 \approx f(x_0) + \delta x f'(x_0)$$

$$\Rightarrow \delta x \approx -\frac{f(x_0)}{f'(x_0)}$$

$$x' = x_0 - \frac{f(x_0)}{f'(x_0)} \quad x_0 \text{ is a guess for the root}$$

$$x' \text{ is an improved estimate.}$$
Root Finding via Newton-Raphson Technique

\[\Rightarrow \delta x \simeq -\frac{f(x_0)}{f'(x_0)} \]
\[x' = x_0 - \frac{f(x_0)}{f'(x_0)} \]

\(x_0 \) is a guess for the root
\(x' \) is an improved estimate.

Process can be repeated to yield yet a better estimate for \(x^* \):
\[x_{N+1} = x_N - \frac{f(x_N)}{f'(x_N)} \]

When do we quit? \(|f(x_k)| \leq \epsilon \)

You pick \(\epsilon \), i.e., \(\epsilon = 0.001 \)

Needed to start: \(f(x), f'(x), x_0 \).

See newton.cc
/*
 newton-raphson method for root finding.
*/
#include <iostream>
#include <cstdlib>
#include <cmath>
using std::endl;
using std::cout;

// define function:
double func_y(double x)
{
 double y = pow(x,3.0) + 1.0;
 return y;
}

//define first derivative of function:
double func_dydx(double s)
{
 return 3.0*pow(s,2.0);
}

int main()
{
 int N= 0;
 int N_limit = 1000; // max number of trys
 double s = -1.1; // initial guess for root
 double tol = 1.0e-5; // tolerance for finding zero

 while ((fabs(func_y(s)) >= tol) && (N < N_limit)){
 s = s - func_y(s)/func_dydx(s);
 ++N;
 }

 if(N > N_limit){
 cout << "iteration limit exceeded" << endl;
 return 0;
 }

 if (N <= N_limit){
 cout << "estimated root = " << s << " with " << N << " iterations." << endl;
 }

 return 0;
}
Root Finding via Bisection Algorithm

N-R technique sometimes fails (e.g., when f'(x_0) = 0)
The "bisection" algorithm is a robust alternative for root finding.

Find root to f(x) = 0, x ∈ [a,b]. Start w/ "bracket values x_L and x_R.

\[f(x_L)f(x_R) < 0 \] (we’ll code this slightly differently below.)

\[x_C = \frac{1}{2}(x_L + x_R) \] guess for root

\{ If \[f(x_C)f(x_R) < 0 \] then \[x_L = x_C \]
otherwise \[x_R = x_C \]

Needed to start: f(x), [a,b]
Quit: \[|x_L - x_R| \leq \epsilon \]

Number of steps \(k = \log_2\left(\frac{b-a}{\epsilon}\right) \)
Bisection technique is sure but slow.

See bisection.cc
```cpp
#include <iostream>
#include <cstdlib>
#include <cmath>
#include <gsl/gsl_math.h>
using std::endl;
using std::cout;
double func_f(double x){   // define function:
    return pow(x,3.0) + 1.0; }

int main() {
    int N= 0;
    int N_limit = 1000;       // max number of trys
    double a = -100.0;   // lower bound for [a,b]
    double b = 3.0;      // upper bound for [a,b]
    double tol = 1.0e-5;          // tolerance for finding zero

    if (func_f(a) == 0.0) {
        cout << a << " is a root." << endl;
        return 0;
    } if (func_f(b) == 0.0) {
        cout << b << " is a root." << endl;
        return 0;
    } else {
        double x_low = a; double x_high = b; double x_mid;
        while ((fabs(x_high - x_low) >= tol) && (N < N_limit)){
            x_mid = 0.5*(x_low + x_high);
            if ( GSL_SIGN(func_f(x_mid)) * GSL_SIGN(func_f(x_high)) < 0){
                x_low = x_mid;
            } else {
                x_high = x_mid;
            }
            ++N;
        }
        if(N > N_limit) {cout << "iteration limit exceeded" << endl;
            return 0;
        } else {
            cout << "estimated root = " << x_mid << " with " << N << " iterations." << endl;
        }
        return 0;
    }
}
```

The code defines a function `func_f` that calculates the value of a cubic polynomial `f(x) = x^3 + 1`. The main function initializes the range `[a, b] = [-100, 3]` and a tolerance level `tol = 1.0e-5`. It then iteratively narrows the range using the bisection method until the difference between the high and low bounds is less than `tol` or until the maximum number of iterations `N_limit = 1000` is reached. If a root is found within the given bounds, it is printed and the function returns 0. If the iteration limit is exceeded, it prints an error message and returns 0.
Lab example: \[f(x) = x^2 - 4 \sin(x) = 0 \]

\(a = 1, \ b = 3 \)

\(\epsilon = 10^{-6} \)

Print: \(a \quad f(a) \quad b \quad f(b) \) for each step.

Q: How many steps \(k \) are required?

Compare w/ prediction on previous slides.

\[k = \log_2\left(\frac{b-a}{\epsilon}\right) \]
Dimension of Sierpinski’s gasket fractal.
Affine transformations and fractal examples.
Root finding (N-R & bisection techniques).

Don’t suffer in silence. Scream for help!!!