Lecture 16 Review

Newton-Raphson warnings.

numerov.cc discussion.

Solution of triangular well via numerov.cc

Fourier Series

Fourier Decomposition

We often observe periodic phenomena in Nature. Describe by periodic functions: y(t + T) = y(t). y(t) could look very complicated in general. Easier to think of y(t) as a superposition of simpler functions.

$$y(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos n\omega t + b_n \sin n\omega t)$$
 numbers

Not obvious this is true.

E.g., How do you know the infinite series even converges?

Fourier Series (2)

Well, Dirichlet's Theorem to the rescue.

- If y(t) periodic w/ period 2π
- If y(t) has finite # of discontinuities AND finite #'s of max's and min's all for $-\pi < t < \pi$

• If $\int_{-\pi}^{\pi} f(t) dt$ = finite

THEN FS converges to f(t), where f(t) is continuous.

At jump points, converges to arithmetic mean of of LH & RH limits of f(t).

Fourier Series (3)

$$y(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos n\omega t + b_n \sin n\omega t$$

w/ $\omega T = 2\pi$

How to determine coefficients a_n and b_n ?

$$a_n = rac{2}{T} \int_0^T dt \, \cos n \omega t \, y(t)$$

$$b_n = rac{2}{T} \int_0^T dt \, \sin n \omega t \, y(t)$$

If y(t) is <u>ODD</u>, y(-t) = -y(t), $a_n = 0$, $\forall n$ If y(t) is <u>EVEN</u>, y(-t) = y(t), $b_n = 0$, $\forall n$

Fourier Series (4)

Sawtooth Function

 $y(t) = odd \implies a_n = 0 \forall n.$

$$b_n = \frac{2}{\tau} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} dt \sin n\omega t \, At/\tau$$

$$= \frac{\omega^2 A}{2\pi^2} \int_{-\frac{\pi}{\omega}}^{\frac{\pi}{\omega}} dt \, t \sin n\omega t$$

$$= \frac{\omega^2 A}{2\pi^2} \left[-\frac{t \cos n\omega t}{n\omega} + \frac{\sin n\omega t}{n^2 \omega^2} \right] \Big|_{-\frac{\pi}{\omega}}^{\frac{\pi}{\omega}}$$

PHYS 3340:17

Fourier Series (5)

$$b_n = \frac{\omega^2 A}{2\pi^2} \left(\frac{2\pi}{n\omega^2}\right) (-1)^{n+1}$$
$$= \frac{A}{n\pi} (-1)^{n+1}$$

Lab exercise: verify w/ gnuplot. Use 5 terms.

Fourier Series (6)

Gibbs phenomenon (9% overshoot as n → ∞).
 Try sawtooth w/ 8 terms.

• At jump, FS = arithmetic mean(LHS & RHS).

Fourier Transforms

Fourier series good for periodic functions.

Fourier "transforms" good for non-periodic functions.

$$\begin{array}{c} \mathsf{FT} \longrightarrow H(f) = \int_{-\infty}^{\infty} h(t) e^{2\pi i f t} \, dt \\ \mathsf{Inverse} \ \mathsf{FT} \longrightarrow h(t) = \int_{-\infty}^{\infty} H(f) e^{-2\pi i f t} \, df \end{array} \begin{array}{c} \mathsf{our\ choice} \\ \mathsf{FT} \longrightarrow h(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} h(t) e^{i\omega t} \, dt \end{array} \begin{array}{c} \mathfrak{o} = 2\pi \mathsf{f} \\ \mathfrak{o} = 2\pi \mathsf{f} \end{array} \\ \\ \mathsf{Inverse} \ \mathsf{FT} \longrightarrow h(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} H(\omega) e^{-i\omega f t} \, d\omega \end{array}$$

H(f) is a measure of the contribution of a particular frequency to f (t) .

Fourier Transforms (2)

We can think of 'time space" and "frequency space." h(t) and H(f) have various symmetry properties:

h(t) even	H(f) even
h(t) odd	H(f) odd
h(t) real	H(-f) = [H(f)]
h(t) imaginary	$H(-f) = - [H(f)]^*$

Parseval's Theorem:

'total power''
$$\equiv \int_{-\infty}^{\infty} |h(t)|^2 \, dt = \int_{-\infty}^{\infty} |H(f)|^2 \, df$$

"one-sided power spectral density" (PSD)

 $P_h(f) \equiv |H(f)|^2 + |H(-f)|^2 \quad 0 \le f < \infty$

Discrete Fourier Transform

<u>Issue</u>: Often <u>discretely</u> sample a waveform and need to know: its shape and/or its frequency characteristics.

Sample (i.e., measure w/ an instrument) every Δ seconds. (1/ Δ is the "sampling rate")

 $cos(2\pi f t)$ f = 2 sampled every 1 second

"Nyquist critical frequency"

Discrete Fourier Transform (2)

 $f_n < 0$? Looks weird. More on this shortly.

Discretize integral form of FT:

Let

DFT (3)

$$H_n\equiv\sum_{k=0}^{N-1}h_k e^{2\pi i k n/N}$$

> Note: H_n has periodicity of N. $H(n) = H(N-n)^*$

 \rightarrow Prove this statement ! \leftarrow

You do <u>not</u> have 2^*N independent numbers in H_n ! <u>Only</u> N. Same as number of sampled points h_k (You will see this in DFT data file.)

Since H(-n) = H(N-n), n = 1,2, ... ←

The n index in H_n varies from 0,1,...N-1 (same as k index)

 $\rightarrow f_n \equiv \frac{n}{N\Delta}$ w/ index n now varying from 0,1, ... N-1

make_fourier_data.cc dft.cc inv_dft.cc

DFT(4)

All in one place:

$$H(f) = \int_{-\infty}^{\infty} h(t)e^{2\pi i f t} dt$$

$$h(t) = \int_{-\infty}^{\infty} H(f)e^{-2\pi i f t} df$$

$$H(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} h(t)e^{i\omega t} dt$$

$$h(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} H(\omega)e^{-i\omega f t} df$$

- N = # of sampled data points.
- Δ = time between sampled data points.
- Δ^{-1} = sampling rate.

Fourier Series. DFT (theory and lab example).

