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Fourier Series

Fourier Decomposition

We often observe periodic phenomena in Nature.

Describe by periodic functions: y(t + T) = y(t).

y(t) could look very complicated in general.

Easier to think of y(t)  as a superposition of simpler functions.
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y(t) = a0
2
+
∑∞

n=1(an

Not obvious this is true.

E.g., How do you know the infinite series even converges?
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n cosnωt+ bn sinnωt)

Not obvious this is true.

E.g., How do you know the infinite series even converges?

numbers



Fourier Series (2)

Well, Dirichlet’s Theorem to the rescue.

• If y(t) periodic w/ period 2π

• If y(t) has finite # of discontinuities  AND  finite #’s of max’s and min’s

all for  - π < t < π

• If = finite 
∫ π
−π f(t) dt
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• If = finite 
∫
−π f(t) dt

THEN  FS  converges to f(t), where f(t) is continuous.

At jump points, converges to arithmetic mean  of

of LH  &  RH limits of f(t).
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THEN  FS  converges to f(t), where f(t) is continuous.

At jump points, converges to arithmetic mean  of



Fourier Series (3)

y(t) = a0
2
+
∑∞

n=1 an cosnω

How to determine coefficients a

an =
2
T

∫ T
0
dt cosnωt y(
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bn =
2
T

∫ T
0
dt sinnωt y(t

If y(t) is ODD,  y(-t) = -y(t), an = 0, 

If y(t) is EVEN,  y(-t) = y(t), bn = 0, 

Fourier Series (3)

ωt+ bn sinnωt w/  ωT = 2π

How to determine coefficients an and  bn ?

(t)
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t)

= 0, ∀n

= 0, ∀n



Fourier Series (4)

Example
Sawtooth Function

A/2

-A/2

y(t)

τ

y(t) = At/τ = ω
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y(t) = At/τ = ω

y(t) = odd  ⇒ an = 0  

bn = 2
τ

∫ τ
2
−τ2
dt

= ω2A
2π2

∫ π
ω
−πω

= ω2A
2π2

[
−t c

Fourier Series (4)

Sawtooth Function

t

ωAt, −τ/2 < t < τ/2
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ωA
2π t, −τ/2 < t < τ/2

= 0  ∀n.

sinnωtAt/τ

dt t sinnωt

cosnωt
nω + sinnωt

n2ω2

]
|
π
ω
−πω



Fourier Series (5)

bn = ω2A
2π2

= A
nπ(−
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Lab exercise: verify w/ gnuplot. Use 5 terms.

Fourier Series (5)

(
2π
nω2

)
(−1)n+1

−1)n+1
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: verify w/ gnuplot. Use 5 terms.



Fourier Series (6)

a
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� Gibbs phenomenon (9% overshoot as n 

� At jump, FS = arithmetic mean(LHS & RHS).

Try sawtooth w/ 8 terms.

Fourier Series (6)
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Gibbs phenomenon (9% overshoot as n → ∞).

At jump, FS = arithmetic mean(LHS & RHS).

Try sawtooth w/ 8 terms.



Fourier Transforms

Fourier series good for periodic functions.

Fourier “transforms” good for non-

FT H(f) =
∫∞
−∞ h(t)e

2πi

∫∞ −2
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FT

Inverse FT

Inverse FT

h(t) =
∫∞
−∞H(f)e

−2

h(t) = 1√
2π

∫∞
−∞H(ω

H(ω) = 1√
2π

∫∞
−∞ h(t

H(f) is a measure of the contribution of a particular frequency to f (t) .

Fourier Transforms

Fourier series good for periodic functions.

-periodic functions.

our choice

πift dt

2
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ω = 2πf

2πift df

ω)e−iωft dω

t)eiωt dt

H(f) is a measure of the contribution of a particular frequency to f (t) .



Fourier Transforms (2)

We can think of ‘time space” and “frequency space.”

h(t) and H(f) have various symmetry properties:

h(t) even H(f) even

h(t) odd H(f) odd 

h(t) real H(-f) = [H(f)]

h(t) imaginary H(-f) = 
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h(t) imaginary

Parseval’s Theorem:

”total power”

“one-sided power spectral density” (PSD)

Ph(f) ≡ |H(f)

H(-f) = 

Fourier Transforms (2)

We can think of ‘time space” and “frequency space.”

h(t) and H(f) have various symmetry properties:

H(f) even

H(f) odd 

f) = [H(f)]

f) = - [H(f)]*
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” ≡
∫∞
−∞ |h(t)|2 dt =

∫∞
−∞ |H(f)|2 df

sided power spectral density” (PSD)

)|2+ |H(−f)|2 0 ≤ f <∞

f) = - [H(f)]*



Discrete Fourier Transform

Issue: Often discretely sample a waveform and need to know:

its shape and/or its frequency characteristics.

Sample (i.e., measure w/ an instrument) every  

(1/∆ is the “sampling rate”)
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“Nyquist critical frequency”

Discrete Fourier Transform

sample a waveform and need to know:

its shape and/or its frequency characteristics.

Sample (i.e., measure w/ an instrument) every  ∆ seconds.
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fc ≡ 1
2∆

cos(2πf t) f = 2

sampled every 1 second



Discrete Fourier Transform (2)

hk ≡ h(tk) tk ≡ k∆ k =

fn ≡ n
N∆ n = −N

2
, . . . N

2

Let

Discretize integral form of FT:

fn < 0? Looks weird. More on this shortly.
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H(fn) =
∫∞
−∞ h(t)e

2πifnt dt ≈
∑N−1

k=0

Hn ≡
∑N−1

k=0 hke
2πikn/N

H(fn) ≈∆Hn

DFT

hk =
1
N

∑N−1
n=0 Hne−2πikn/N Inverse DFT

continuous v. discrete FTs 

∑N−1
k=0 |hk|2 = 1

N

∑N−1
n=0 |Hn|2 Discrete form of Parseval’s theorem

same units

Discrete Fourier Transform (2)

= 0,1,2 . . . , N − 1

N = number of data points

∆ = time between data points.

< 0? Looks weird. More on this shortly.
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−1
0 hke

2πifntk∆=∆
∑N−1

k=0 hke
2πikn/N

DFT

Inverse DFT

continuous v. discrete FTs (note the units)

Discrete form of Parseval’s theorem



DFT (3)

Hn ≡
∑N−1

k=0 hke
2πikn/N

You do not have 2*N independent numbers in H

� Note: Hn has periodicity of N. H(n) = H(N

(You will see this in DFT data file.)

Same as number of sampled points h

→ Prove this statement ! ←
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(You will see this in DFT data file.)

make_fourier_data.cc

dft.cc

inv_dft.cc

Since  H(-n) = H(N-n), n = 1,2, …

The n index in Hn varies from 0,1, …N

w/ index n now varying from 0,1, …Nfn ≡ n
N∆

DFT (3)

have 2*N independent numbers in Hn ! Only N.

has periodicity of N. H(n) = H(N-n)*

Same as number of sampled points hk
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make_fourier_data.cc

inv_dft.cc

varies from 0,1, …N-1  (same as k index)

w/ index n now varying from 0,1, …N-1



DFT(4)

H(f) =
∫∞
−∞ h

h(t) =
∫∞
−∞H

h(t) = 1√
2π

∫∞
−

H(ω) = 1√
2π

∫

All in one place:
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√
2π

∫
−

Hn ≡
∑N−1

k=0 h

hk =
1
N

∑N−
n=0

fn ≡ n
N∆

N = # of sampled data points.

∆ = time between sampled data points.

∆-1 =  sampling rate.

DFT(4)

h(t)e2πift dt

H(f)e−2πift df

∞
−∞H(ω)e

−iωft df

∫∞
−∞ h(t)e

iωt dt

Our choice.

TE Coan/SMU 13

−∞

hke
2πikn/N

−1
=0 Hne−2πikn/N n = 0,1, 2 … N - 1.

N = # of sampled data points.

= time between sampled data points.

=  sampling rate.



Summary

DFT (theory and lab example).

Fourier Series.
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Don’t suffer in silence. Scream for help!!!

Summary

DFT (theory and lab example).

Fourier Series.
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Don’t suffer in silence. Scream for help!!!
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