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(pick N = power of 2)



Linear Algebra Highlights

� Physics often requires solution of eiegnevectors & eigenvalues.

e.g., coupled oscillators, electrical circuits, …

Set of equations of the form: Ax =

� Physics often requires solution of simultaneous linear equations.

e.g., normal modes, eigenfrequencies, bound energy states,  …
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e.g., normal modes, eigenfrequencies, bound energy states,  …

Ax = λxEquations of the form:

� These are 2 different classes of problems to solve.

� Techniques are sophisticated. We will use canned software.

Linear Algebra Highlights

Physics often requires solution of eiegnevectors & eigenvalues.

e.g., coupled oscillators, electrical circuits, …

= b Solve for x, A & b given.

Physics often requires solution of simultaneous linear equations.

e.g., normal modes, eigenfrequencies, bound energy states,  …
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e.g., normal modes, eigenfrequencies, bound energy states,  …

Solve for x, λ & A given.

These are 2 different classes of problems to solve.

Techniques are sophisticated. We will use canned software.



Solution of Linear Simultaneous Equations

2u + v +w = 1
4u + v = −2

−2u + 2v +w = 7

Gaussian elimination. Easiest to understand.

2u + v +w = 1
− 1v −2w = −4
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2u + v +w = 1
− 1v −2w = −4

−4w = −4

− 1v −2w = −4
3v +2w = 8pivots

Where might this technique break down?

Solution of Linear Simultaneous Equations

Gaussian elimination. Easiest to understand.

Count number of operations

� “Forward elimination.”

� “Back substitution.”

TE Coan/SMU 3

Where might this technique break down?



LU Decomposition

Write matrix A = LU i.e., factorize A, always OK if A has non

Ax = b =(LU)x = L(Ux) = b

Ly = b

Ux = y






1 0
α10 1
α20 α2
α30 α3

= 






a00 a01 a02 a03
a10 a11 a12 a13
a20 a21 a22 a23
a30 a31 a32 a33






a way to proceed.

unique
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Ux = y

example:






2 1 1
4 1 0

−2 2 1










u

v

w










8
11
3




=






1 0 0
2 1 0

−1 −3 1










c1
c2
c3






.





2 1 1
0 −1 −2
0 0 4










x1
x2
x3






LU Decomposition

i.e., factorize A, always OK if A has non-zero pivots

0 0 0
1 0 0

21 1 0

31 α32 1











β00 β01 β02 β03
0 β11 β12 β13
0 0 β22 β23
0 0 0 β33






pivots

a way to proceed.
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




2 1 1
4 1 0

−2 2 1




=






1 0 0
2 1 0

−1 −3 1










2 1 1
0 −1 −2
0 0 4










8
11
3




=






8
−5
−4




=

c =






8
−5
−4




or

or x =





2
3
1








LU Decomposition (2)

Ax = b =(LU)x = L(Ux) = b

Ly = b

Ux = y

= 






a00 a01 a02 a03
a10 a11 a12 a13
a20 a21 a22 a23
a30 a31 a32 a33






a way to proceed.






1
α10
α20 α
α30 α
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Ux = y

xi =
1
βii

[
yi −

∑N−1
j=i+1 βijxj

]
i = N −

yi =
1
αii

[
bi −

∑i−1
j=0 αijyj

]
i = 1,2, .

y0 =
b0
α00

xN−1 =
yN−1

βN−1,N−1

“forward substitution”

“back substitution”

LU Decomposition (2)






β00 β01 β02 β03
0 β11 β12 β13
0 0 β22 β23
0 0 0 β33






a way to proceed.

0 0 0
1 0 0
α21 1 0
α31 α32 1





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− 2, N − 3, . . . ,0

. . , N − 1 L & U computed 

once per A

N3 steps to solve for x.



LU Decomposition (3)

What to do if A has zero pivots?

If A has an inverse (i.e., is “non-singular”), 

reorder rows of A beforehand to prevent zero pivots A 

P = “permutation matrix” (reorders rows of A)

P24 =






1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0




 e.g., swaps row 2 & 4 of A

PA = LU
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

0 1 0 0




PAx = Pb  has same solution x as Ax = b. (Formally, x = A

Proof: x = (PA)-1Pb  = A-1P-1Pb = A-1b

Q: If Ax = b, why not just compute x = A

A: Computing A-1 is more “expensive” than computing LU.

LU Decomposition (3)

singular”), 

rows of A beforehand to prevent zero pivots A → PA

P = “permutation matrix” (reorders rows of A)

e.g., swaps row 2 & 4 of A

TE Coan/SMU 6

PAx = Pb  has same solution x as Ax = b. (Formally, x = A-1b)

b

If Ax = b, why not just compute x = A-1b ?

1 is more “expensive” than computing LU.



Linear Algebra and Octave

Exercise (from chemistry !): α O2 + 

Find correct stoichiometry (i.e., find α

Often need to perform matrix calculations quickly (i.e., w/o writing code)

octave:1>

Use octave (freeware)

prompt> octave
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octave:1>

Use as caclulator: 2/83

Standard set of math functions:

Colon notation:

octave:31>: e= 2:6

Semicolon usage:
octave:31>: f= 2:6;

octave:31>: f= 2:6:40

Linear Algebra and Octave

+ β C4H9NH2 � γ CO2 + δ H20 + N2

α, β, γ, δ).

Often need to perform matrix calculations quickly (i.e., w/o writing code)

cos cosine
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exp exponential

log Natural log

log10 Log base 10

tanh Hyperbolic tangent

atan Arc-tangent

round Round to nearest integer



Matrix manipulation 

octave:45> a= [ 1,3;2,7]

Octave (2)

octave:46> a’

Extensive help utility: try    help 
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Built-in functions for large matrices.

octave:51>: s = zeros(M,N) 

octave:52>: r = ones(M,N)

octave:47> f = [ 1:6]’

octave:53>: rr = linspace(x1,x2,N)

octave:53>: r = logspace(x1,x2,N)

Octave (2)

help -i
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in functions for large matrices.

s = zeros(M,N) w/ M,N = integers

r = ones(M,N)

rr = linspace(x1,x2,N)

r = logspace(x1,x2,N)



Plotting: basic command is plot(x,y)

octave:85> angles = [0:pi/3:2*pi];

Octave (3)

octave:87> y = sin(angles)

octave:88> plot (angles, y)

uses gnuplot
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Functions: 

octave:151>: function s = dub(x)

>  s = 2*x;
>  end

output 
name 

octave:152>: dub(35)

plot(x,y)

angles = [0:pi/3:2*pi];

Octave (3)

y = sin(angles)

plot (angles, y)
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function s = dub(x)

input 

name 



Octave notes

Ax = b

Define A in usual way.

a\ is octave speak for a 

octave:3> a = [1,3,5; 1, 5, 6; 3, 7, 9]

octave:4> b = [2, 5,9]’ for example.

octave:4> x = a\b
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is octave speak for a 

octave does NOT compute the inverse of a to solve for x.

Many variants to LU decomposition.

These depend on structure of A: degree of symmetry, sparseness, …

Octave notes

is octave speak for a -1.

octave:3> a = [1,3,5; 1, 5, 6; 3, 7, 9] for example.

for example.

TE Coan/SMU 10

is octave speak for a .

octave does NOT compute the inverse of a to solve for x.

These depend on structure of A: degree of symmetry, sparseness, …



Linear Algebra Highlights

� Physics often requires solution of eiegnevectors & eigenvalues.

e.g., normal modes, eigenfrequencies, bound energy states, …

Ax = λxEquations of the form:

(A− λI)x = 0 Eigenvectors x lie in the “nullspace”  of  A 

For λ to be an eigenvalue of A:

1) non-zero x for which Ax = λx
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1) non-zero x for which Ax = λx

2)  A - λI  is singular

3) det( A - λI) = 0 

#3 implies sum of n eigenvalues of A = 

∥∥∥∥∥∥

(a11 − λ) a12 a13
a21 (a22 − λ) a23
a31 a32 (a33 − λ)

∥∥∥∥∥∥
=

Linear Algebra Highlights

Physics often requires solution of eiegnevectors & eigenvalues.

e.g., normal modes, eigenfrequencies, bound energy states, …

Solve for λ & x,  A is given.

Eigenvectors x lie in the “nullspace”  of  A - λI

Nonlinear equation.
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Each is necessary and sufficient

of A = sum of diagonal entries of A 

= (a11−λ)[(a22−λ)(a33−λ)−a32a23] + · · · = 0



Eigenvalues

∥∥∥∥∥∥

(a11 − λ) a12 a13
0 (a22 − λ) a23
0 0 (a33 − λ)

∥∥∥∥∥∥
=

If A is triangular (lower or upper), λ’s appear on diagonal of A

#3 also implies:

Now, suppose the n X n matrix A has n linearly independent eigenvectors
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S−1AS = Λ =






λ1
λ2

. . .

Now, suppose the n X n matrix A has n linearly independent eigenvectors

Then if you write them as the column vectors of a matrix S

S-1AS  is diagonal w/ the λ’s of A along the diagonal:

Eigenvalues

= (a11 − λ)(a22 − λ)(a33 − λ)= 0

’s appear on diagonal of A

Now, suppose the n X n matrix A has n linearly independent eigenvectors
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λn






Now, suppose the n X n matrix A has n linearly independent eigenvectors

Then if you write them as the column vectors of a matrix S

’s of A along the diagonal:



Eigenvalues

AS = A




| | | |
x1 x2 · · · xn
| | | |



 =




|

λ1x1
|




| | | |

λ1x1 λ2x2 · · · λnxn
| | | |



 =




| |
x1 x2
| |

Here’s why S-1AS = ΛΛΛΛ
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“similarity transformation”

AS = SΛΛΛΛ or  S-1AS = ΛΛΛΛ

Furthermore, for any non-singular matrix M:

If B = M-1AM then A & B have same λ’s w/ same multiplicities.

Here’s why:

det(B - λI) = det( M-1AM - λI) = det(M

= det M-1 det(A - λI) det M = det(A 

Eigenvalues (2)

| | |

1 λ2x2 · · · λnxn
| | |





| |
· · · xn
| |










λ1
λ2

. . .

λn





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“similarity transformation”

singular matrix M:

’s w/ same multiplicities.

I) = det(M-1(A - λI)M) 

I) det M = det(A - λI)



Strategy for Finding 

Strategy to find λ’s and eigenvectors x of A.

Perform similarity transformations to diagonalize A

P-1AP = A’

P ≡ P1P2P3 …

Diagonal (A and A

P−1AP = . . . P−1
3
P−1
2
(P−1
1
AP1)P

Amazingly, we can get eigenvectors from P

P could be  a product of many transformations.

Suppose the  n eigenvectors ui of A are linearly indpt and are a basis. 
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Suppose the  n eigenvectors ui of A are linearly indpt and are a basis. 

A′vi = (P
−1AP )(̇P−1ui) = P

−1A

vi =






0
...
0
1
0
...
0






Only non-zero term (remember, A’ is diagonal)

vi ≡ P
−1ui

Now note:

eigenvectors of A = columns of P ! 

Strategy for Finding λλλλ and x

’s and eigenvectors x of A.

Perform similarity transformations to diagonalize A

Diagonal (A and A’ have same eigenvalues)

P2P3 . . .

Amazingly, we can get eigenvectors from P

P could be  a product of many transformations.

of A are linearly indpt and are a basis. 
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of A are linearly indpt and are a basis. 

Aui = λvi

Pvi = P (P
−1ui) = ui

zero term (remember, A’ is diagonal)

Now note:

eigenvectors of A = columns of P ! 



Examples of P-type Transformations

P =






1
. . . cos θ . . . sin θ

... 1
...

− sin θ . . . cos θ
1

Also sometimes useful to factorize A:  A = PQ
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Also sometimes useful to factorize A:  A = PQ

then note: QP = (P-1 A)P

similarity transformation

type Transformations






Works on some elements of A

Also sometimes useful to factorize A:  A = PQ

Seek to eliminate off-diagonal terms
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Also sometimes useful to factorize A:  A = PQ

similarity transformation



Octave Calisthenics

A =

[

Q: What is the sum S of the eigenvalues?

Q: What are the eigenvalues? Solve 

FYI:  octave:19>  help –i eig  
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Q: What is the LU decomposition of  A?

NB: octave computes A = PLU w/ 1’s along diagonal of L

Q: What are the eigenvectors of A ?

Q: What is A-1 ? Verify this.

Calisthenics

1 5
2 8

]

Q: What is the sum S of the eigenvalues?

Q: What are the eigenvalues? Solve first by hand, then by octave.

i eig  will be helpful !!
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Q: What is the LU decomposition of  A?

computes A = PLU w/ 1’s along diagonal of L

Q: What are the eigenvectors of A ?



Octave Calisthenics

Ω
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R1 = R2 = 1Ω

R3 = R4 = 2Ω

R5 = 5Ω

Find I in all legs.

Calisthenics (2)
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E1 = 2V

E3 = 5V

E2 = 10V

Find I in all legs.



Octave 1

{
dx/dt = x(a− by)
dy/dt = −y(c− dx)

Recall Volterra prey-predator equations

a = 1.0, b = 0.5, c = 0.95, d = 0.25 

Solved previously w/ GSL routines.

Can be solved w/ octave

function xdot = vp(x,t

xdot = zeros(2,1);
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xdot = zeros(2,1);

a = 1.0;

b = 0.5;

c = 0.95;

d = 0.25;

xdot(1) = x(1)*(a - b* x(2));

xdot(2) = -x(2)*(c - d*x(1));

endfunction

Octave 1st ODE

predator equations

a = 1.0, b = 0.5, c = 0.95, d = 0.25 

Solved previously w/ GSL routines.

x,t)

vectors

scalar
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b* x(2));

d*x(1));

scalar

dx

dt
= f(x, t)



1st ODE Solution via 

Set initial conditions: x0 = [5; 5]

t =  linspace(0, 500, 1000);

y =  lsode(“vp”, x0, t);

column vector is returned
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column vector is returned

plot(t,y)

Change ICs. What do you see?

“x” variable

“y” variable

ODE Solution via octave (2)

x0 = [5; 5]

column vector

t =  linspace(0, 500, 1000);
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Octave 1st

For convenience, functions can be placed in files.

# example of function file

function xdot = vp(x,t)

xdot = zeros(2,1);

a = 1.0;

Example:     vp.m (the “m” extension is for compatibility w/ MATLAB)
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b = 0.5;

c = 0.95;

d = 0.25;

xdot(1) = x(1)*(a - b* x(2));

xdot(2) = -x(2)*(c - d*x(1));

endfunction

Usage:     octave:41>  vp

Note: octave will throw errors (b/c x is not specified) . Ignore them.

st ODE (3)

For convenience, functions can be placed in files.

(the “m” extension is for compatibility w/ MATLAB)

TE Coan/SMU 20

Note: octave will throw errors (b/c x is not specified) . Ignore them.



Planetary Orbits via 

Solve for Earth’s motion around the Sun using 

Produce a plot showing orbit !!

PHYS 3340:19 TE Coan/SMU

Planetary Orbits via octave

Solve for Earth’s motion around the Sun using octave.
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Summary

LU decomposition

Gaussian elimination.

octave intro

Finding eigenvalues and eigenvectors

PHYS 3340:19 TE Coan/SMU

Don’t suffer in silence. Scream for help!!!

octave calisthenics

Solving ODEs w/ 

Summary

LU decomposition

Gaussian elimination.

intro

Finding eigenvalues and eigenvectors
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Don’t suffer in silence. Scream for help!!!

calisthenics

Solving ODEs w/ octave
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