
Lecture 3 Review

std::cout , std::cin are the std output, input

int main () (all programs need a main function)

// comment indicator (stuff to right on

C++ basic program structure:

#include<iostream>… (“header files” are essential)

PHYS 3340:4 TE Coan/SMU

!! Scream if you get stuck !!

� http://cplusplus.com/doc/tutorial/program_structure.html

g++ compiler (source code � executable code)

Lecture 3 Review

are the std output, input

(all programs need a main function)

// comment indicator (stuff to right on same line ignored)

#include<iostream>… (“header files” are essential)

TE Coan/SMU 1

!! Scream if you get stuck !!

http://cplusplus.com/doc/tutorial/program_structure.html

executable code)

Number Representation on a Computer

� “Computers are not infinitely precise in their calculations.”

� We need to pay attention to significant figures. (As in lab!!)

� Real numbers represented in binary form: fixed

� Fixed point (fixed number of digits before/after decimal point.)

� N bits used to represent number I (e.g., 23.45)

PHYS 3340:4 TE Coan/SMU

I = sign×(αn2n+αn−12

n+m = N − 2 and N, m , n machine dependentwith

Advantage: All FxP numbers have same

� We won’t use FxP numbers all that much.

Can represent fractional powers of 2 exactly.

Disadvantage: Cannot represent exactly fractional powers of 10.

Number Representation on a Computer

“Computers are not infinitely precise in their calculations.”

We need to pay attention to significant figures. (As in lab!!)

Real numbers represented in binary form: fixed-point or floating point

(fixed number of digits before/after decimal point.)

N bits used to represent number I (e.g., 23.45)

TE Coan/SMU 2

2n−1+...α0+...α−m2
−m)

and N, m , n machine dependent

: All FxP numbers have same absolute error: 2−m−1

We won’t use FxP numbers all that much.

Can represent fractional powers of 2 exactly.

: Cannot represent exactly fractional powers of 10.

Number Representation on a Computer

We will use “floating point numbers:” use a representation of a

number where the decimal can float around wrt sig figs and then

adjust matters via an exponent. Think scientific notation.

Advantage: Greater range of numbers can be represented wrt FxP rep.

� We’ll use floating point rep for numbers almost exclusively.

s

PHYS 3340:4 TE Coan/SMU

Assumption: 4 “bytes” = 32 bits used to store number.

s

Bit position 31 30 23

xfloat = (−1)
s
×

s = sign bit. f = mantissa e = “exponent field”

“real” exponent = p = e – bias (always want e

Number Representation on a Computer

We will use “floating point numbers:” use a representation of a

number where the decimal can float around wrt sig figs and then

adjust matters via an exponent. Think scientific notation.

: Greater range of numbers can be represented wrt FxP rep.

We’ll use floating point rep for numbers almost exclusively.

e−bias

TE Coan/SMU 3

Assumption: 4 “bytes” = 32 bits used to store number.

e f

30 23 22 0

× 1.f × 2e−bias

e = “exponent field” bias = 12710

bias (always want e ≥ 0, ∀p)

Floating Point Representation of a Number

s e

Bit position 31 30 23

23 bits used to set precision of nu

mantissa = 1.f = 1 +m22 × 2
−1

PHYS 3340:4 TE Coan/SMU

23 bits used to set precision of nu

precision = 1 part in 2^23. What is this in plain English?

Hint: 2^10 = 1024 (call it an even 1000 for estimation purposes).

Q: What the is 2^23? And then 1/2^23 ?

This ratio sets the limit on the precision your computer recognizes,

regardless of exponent: e.g., 1.00000005 X 10^

(IF using 32 bits to store a number. We will verify on our machines.)

Floating Point Representation of a Number

f

30 23 22 0

number (IF 4 bytes used, you decide.)

+m21 × 2
−2 + · · ·+m0 × 2

−23

TE Coan/SMU 4

number (IF 4 bytes used, you decide.)

precision = 1 part in 2^23. What is this in plain English?

Hint: 2^10 = 1024 (call it an even 1000 for estimation purposes).

And then 1/2^23 ?

This ratio sets the limit on the precision your computer recognizes,

regardless of exponent: e.g., 1.00000005 X 10^-22 = 1.0 X 10^-22

to store a number. We will verify on our machines.)

Floating Point Representation of a Number (2)

s e

Bit position 31 30 23

Range of “exponent field e”: 0 ≤ e ≤

Jargon: “normal floating point number”: 0

Q: What is largest positive normal fp

PHYS 3340:4 TE Coan/SMU

Q: What is largest positive normal fp

Recall: xfloat = (−1)
s
× 1.f

1.f = 1.1111 1111 1111 1111 1111

mantissa = 1.f = 1 +m22 ×

p = e – bias = e10 – 127 (p is the “real” exponent you want)

Answer = ?????

Floating Point Representation of a Number (2)

f

30 23 22 0

25510 (Note: 256 values = 2^8.)

Jargon: “normal floating point number”: 0 < e < 255

l fp number? (Yes, a question to you !)

TE Coan/SMU 5

l fp number? (Yes, a question to you !)

× 2e−bias

1.f = 1.1111 1111 1111 1111 1111 111

× 2−1 +m21 × 2
−2 + · · ·+m0 × 2

−23

127 (p is the “real” exponent you want)

“Double Precision” Numbers

s e

Bit position 63 62 52

Typically require more precision than just 32 bit representation.

Solution: Use 2 X 32 bits = 64 bit representation. (Who knew?)

Very simple to do in C++ (and other languages). See how soon.

PHYS 3340:4 TE Coan/SMU

Bit position 63 62 52

HW problem: Estimate precision for such “double precision” numbers.

Reference: See CP, sec 2.5 -2.7.

Always use double precision numbers for scientific computing.

“Double Precision” Numbers

f f (cont.)

51 32 31 0

Typically require more precision than just 32 bit representation.

Solution: Use 2 X 32 bits = 64 bit representation. (Who knew?)

Very simple to do in C++ (and other languages). See how soon.

TE Coan/SMU 6

51 32 31 0

HW problem: Estimate precision for such “double precision” numbers.

Always use double precision numbers for scientific computing.

“Machine Precision”#include <iostream>

using std::cout; using std::cin; using std::endl;

int main()

{

float one = 1;

float eps = 0.02;

int N;

cout << " N = " ;

cin >> N;

New

PHYS 3340:4 TE Coan/SMU

cout << "N = " << N << endl;

for (int i = 0; i < N; ++i){

eps = eps/2.;

one = 1. + eps;

cout << "one = " << one << " \t step = " << i << "

}

return 0;

}

New

“Machine Precision”

How to measure em?

xc = x(1 ± e) w/ |e| ≤ em.

Even w/ double precision (64 bits),

computer precision is not infinite.

New

TE Coan/SMU 7

t step = " << i << "\t eps = " << eps << endl;

New

Execute Machine Precision Code

Edit and compile previous program:

g++ -o mach_precision mach_precision.cc

Q: What is N?

Useful linux trick: Put interactive executable in shell “script.”

Q: What is em?

PHYS 3340:4 TE Coan/SMU

Useful linux trick: Put interactive executable in shell “script.”

#!/bin/tcsh –f

mach_precision << stuff

30

stuff

Req’d: says what shell to use, takes options.

input
Req’d magic symbol

Your executable

Use cx to make script file executable. Try
Troubles getting your script to run? First,

Execute Machine Precision Code

Edit and compile previous program:

o mach_precision mach_precision.cc

linux trick: Put interactive executable in shell “script.”

TE Coan/SMU 8

linux trick: Put interactive executable in shell “script.”

Must match

Req’d: says what shell to use, takes options.
Your executable

Place in file

to make script file executable. Try which cx
Troubles getting your script to run? First, ls –l your_file

Help with C++ Variables and For Loop

My head is exploding.

I need something to read quietly, at my

PHYS 3340:4 TE Coan/SMU

http://www.cplusplus.com/doc/tutorial/variables.html

http://www.cplusplus.com/doc/tutorial/control.html

Link also available from PHYS 3340 links page

Help with C++ Variables and For Loop

I need something to read quietly, at my own pace.

TE Coan/SMU 9

http://www.cplusplus.com/doc/tutorial/variables.html

http://www.cplusplus.com/doc/tutorial/control.html

Link also available from PHYS 3340 links page

Summary

� Representation of single & double precision real numbers.

� Code to determine machine precision for single precision numbers.

� Either representation has a finite

� Example of variable declaration (single precision real).

� Example of for loop.

PHYS 3340:4 TE Coan/SMU

� Simple example of a “here document” in shell scripting.

You should have finished

Don’t suffer in silence. Scream for help!!!

Summary

Representation of single & double precision real numbers.

Code to determine machine precision for single precision numbers.

finite precision.

Example of variable declaration (single precision real).

TE Coan/SMU 10

Simple example of a “here document” in shell scripting.

finished linux tutorial

Don’t suffer in silence. Scream for help!!!

PHYS 3340:4 TE Coan/SMUTE Coan/SMU 11

