Lecture 3 Review

C++ basic program structure:

#include<iostream>… (“header files” are essential)

// comment indicator (stuff to right on same line ignored)

std::cout , std::cin are the std output, input

int main () (all programs need a main function)

g++ compiler (source code → executable code)

➢ http://cplusplus.com/doc/tutorial/program_structure.html

!! Scream if you get stuck !!
“Computers are not infinitely precise in their calculations.”

We need to pay attention to significant figures. (As in lab!!)

Real numbers represented in binary form: fixed-point or floating point

Fixed point (fixed number of digits before/after decimal point.)

N bits used to represent number \(I \) (e.g., 23.45)

\[
I = \text{sign} \times (\alpha_n 2^n + \alpha_{n-1} 2^{n-1} + \ldots \alpha_0 + \ldots \alpha_{-m} 2^{-m})
\]

with \(n + m = N - 2 \) and \(N, m, n \) machine dependent

Advantage: All FxP numbers have same **absolute** error: \(2^{-m-1} \)

Can represent fractional powers of 2 exactly.

Disadvantage: Cannot represent exactly fractional powers of 10.

- We won’t use FxP numbers all that much.
Number Representation on a Computer

We will use “floating point numbers:” use a representation of a number where the decimal can float around wrt sig figs and then adjust matters via an exponent. Think scientific notation.

Advantage: Greater range of numbers can be represented wrt FxP rep.

- We’ll use floating point rep for numbers almost exclusively.

\[x_{\text{float}} = (-1)^s \times 1.f \times 2^{e-bias} \]

- \(s \) = sign bit.
- \(f \) = mantissa
- \(e \) = “exponent field”
- bias = 127\(_{10}\)
- “real” exponent = \(p = e – \text{bias} \) (always want \(e \geq 0, \forall p \))

<table>
<thead>
<tr>
<th>Bit position</th>
<th>s</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit position</td>
<td>31</td>
<td>30</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Assumption: 4 “bytes” = 32 bits used to store number.
Floating Point Representation of a Number

\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{Bit position} & s & e & f \\
\hline
31 & 30 & 23 & 22 & 0 \\
\hline
\end{array}
\]

\[
mantissa = 1.f = 1 + m_{22} \times 2^{-1} + m_{21} \times 2^{-2} + \cdots + m_0 \times 2^{-23}
\]

23 bits used to set precision of number (IF 4 bytes used, you decide.) precision = 1 part in 2^{23}. What is this in plain English?

Hint: $2^{10} = 1024$ (call it an even 1000 for estimation purposes).

Q: What the is 2^{23}? And then $1/2^{23}$?

This ratio sets the limit on the precision your computer recognizes, regardless of exponent: e.g., $1.00000005 \times 10^{-22} = 1.0 \times 10^{-22}$

(\textbf{IF using 32 bits} to store a number. We will verify on our machines.)
Floating Point Representation of a Number (2)

<table>
<thead>
<tr>
<th>Bit position</th>
<th>s</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>30</td>
<td>23</td>
<td>22</td>
</tr>
</tbody>
</table>

Range of “exponent field e”: $0 \leq e \leq 255_{10}$ (Note: 256 values $= 2^{8}$.)

Jargon: “normal floating point number”: $0 < e < 255$

Q: What is **largest positive** normal fp number? (Yes, a question to you !)

Recall:

\[
x_{float} = (-1)^s \times 1.f \times 2^{e - bias}
\]

\[
mantissa = 1.f = 1 + m_{22} \times 2^{-1} + m_{21} \times 2^{-2} + \cdots + m_0 \times 2^{-23}
\]

\[
1.f = 1.1111 \quad 1111 \quad 1111 \quad 1111 \quad 1111 \quad 1111 \quad 111
\]

\[
p = e - bias = e_{10} - 127 \text{ (p is the “real” exponent you want)}
\]

Answer = ?????
“Double Precision” Numbers

Typically require more precision than just 32 bit representation.

Solution: Use 2 X 32 bits = 64 bit representation. (Who knew?)

Very simple to do in C++ (and other languages). See how soon.

<table>
<thead>
<tr>
<th>Bit position</th>
<th>s</th>
<th>e</th>
<th>f</th>
<th>f (cont.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>63</td>
<td>62</td>
<td>52</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>31</td>
<td>32</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HW problem: Estimate precision for such “double precision” numbers.
Reference: See CP, sec 2.5 -2.7.

Always use double precision numbers for scientific computing.
#include <iostream> using std::cout; using std::cin; using std::endl;

int main()
{
 float one = 1;
 float eps = 0.02;
 int N;
 cout << " N = " ;
 cin >> N;
 cout << "N = " << N << endl;
 for (int i = 0; i < N; ++i)
 {
 eps = eps/2.;
 one = 1. + eps;
 cout << "one = " << one << " \t step = " << i << " \t eps = " << eps << endl;
 }
 return 0;
}

Even w/ double precision (64 bits), computer precision is **not** infinite.

\[x_c = x(1 \pm e) \quad \text{w/ } |e| \leq e_m. \]

How to measure \(e_m \)?
Execute Machine Precision Code

Edit and compile previous program:
g++ -o mach_precision mach_precision.cc

Q: What is N?
Q: What is \(e_m \)?

Useful Linux trick: Put interactive executable in shell “script.”

```bash
#!/bin/tcsh -f
# Req’d: says what shell to use, takes options.
Your executable
mach_precision << stuff
# Req’d magic symbol
stuff
30 input
# Req’d magic symbol
stuff
```

Place in file

Troubles getting your script to run? First, `ls -l your_file` Use `cx` to make script file executable. Try `which cx`
Help with C++ Variables and For Loop

My head is exploding.

I need something to read quietly, at my **own** pace.

http://www.cplusplus.com/doc/tutorial/variables.html
http://www.cplusplus.com/doc/tutorial/control.html

Link also available from PHYS 3340 links page
Summary

- Representation of single & double precision real numbers.
- Either representation has a finite precision.
- Code to determine machine precision for single precision numbers.
- Example of variable declaration (single precision real).
- Example of for loop.
- Simple example of a “here document” in shell scripting.

You should have finished linux tutorial

Don’t suffer in silence. Scream for help!!!