#### **Lecture 8 Review**

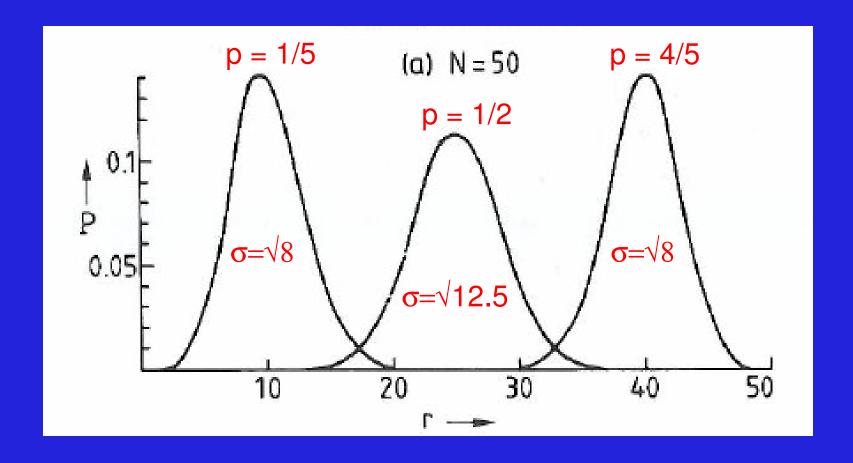
#### Binomial probability distribution

$$P_B(x; N, p) = \binom{N}{x} p^x q^{N-x} = \frac{N!}{x!(N-x)!} p^x (1-p)^{N-x}$$

 $\mu=Np$  mean value

 $\sigma^2=Npq$  "variance."  $\sigma$  measures width of  $\mathsf{P}_\mathsf{B}$ .

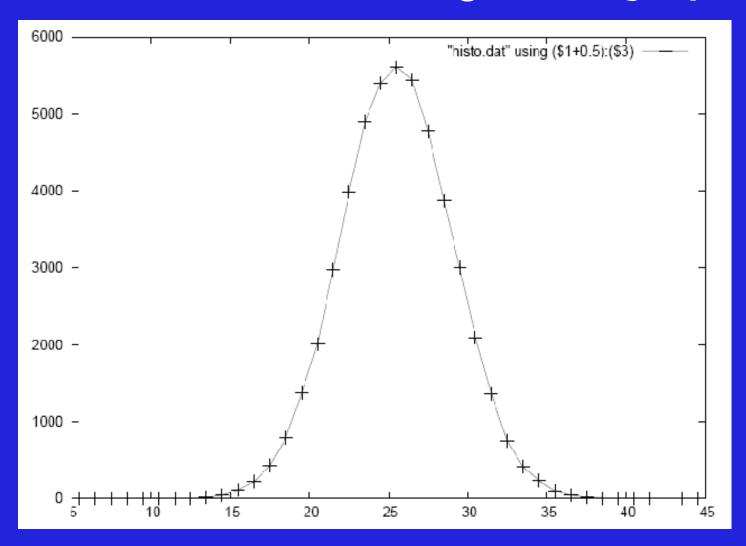
#### **Binomial Distribution Examples**



gsl-randist 123 1000 binomial 0.5 50 | gsl-histogram 5 45 40

"pipe" symbol: directs output of one command to input of another.

# Binomial Distribution Histogram via gnuplot



gnuplot> plot "histo.dat" using (\$1+0.5):(\$3) w lp

# **Poisson Probability Distribution**

• Interesting case when  $N \to \infty$ ,  $p \to 0$ , but  $N^*p =$  finite.

 $P_B(x; N, p)$  describes prob of observing x events per unit time out of N possible, each of which has prob p of occurring.

Taking the limits,

$$\lim_{p\to 0} P_B(x; N, p) = P_P(x; \mu) \equiv \frac{\mu^x}{x!} e^{-\mu}$$

 $P_P(x: \mu)$  is the probability of observing x occurrences per unit measure when the mean number of occurrences per unit measure is  $\mu$ .

 $\mu$  = mean number of events per unit time or per unit length or per unit ...  $\sigma^2 = \mu$  ( $\sigma$  still characterizes width of probability distribution curve)

Q: Plot poisson distribution w/  $\mu$  = 3.5, 10,000 points Use piping, redirection and gnuplot. NO cut-and-paste !!!

### **Gaussian Probability Density**

• Another interesting case when  $N\to\infty$ ,  $p\neq 0$ , but  $N^*p\gg 1$  Same case is obtained from  $P_P(x;\mu)$  when  $\mu\gg 1$  We obtain "gaussian" probability density  $p_G$ 

$$p_G(x; \sigma, \mu) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right]$$

p<sub>G</sub> is a continuous function. p<sub>G</sub> dx is a probability (i.e., a pure number)

 $p_G$  dx is a probability of observing x between x and x + dx

 $\mu$  = mean value of x in parent distribution

 $\sigma^2$  characterizes variation about  $\mu$  of parent distribution.

**Q:** Plot gaussian distribution w/  $\mu$  = 10.0,  $\sigma$  = 3.0, 10,000 points Use piping, redirection and gnuplot. NO cut-and-paste !!! Note: gsl gaussian takes only sigma (assumes  $\mu$ =0)

## **Probability Numbers from Probability Distributions**

Often need to pick a random number from an arbitrary probability distribution P(x).
 How to do this from <u>uniform</u> probability distribution p(r) btwn [0,1)?

$$p(r) = \begin{cases} 1 \text{ for } 0 \le 1 \\ 0 \text{ otherwise} \end{cases}$$

Consider the transformation x(r): random x as a function of uniform random r. The probability distribution of x, g(x)dx, is determined by the condition:

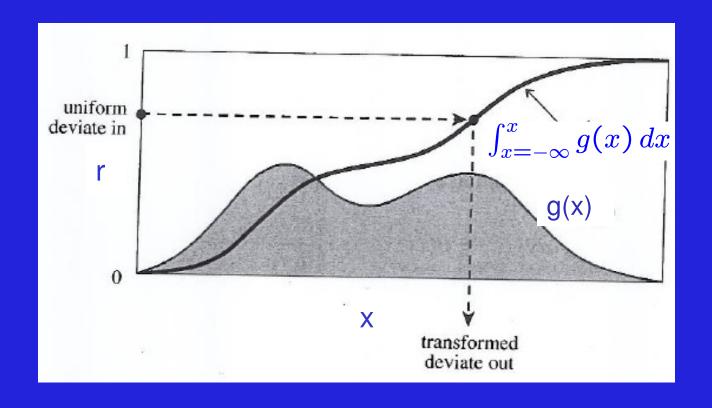
Conservation of probability:  $|p(r)\Delta r| = |g(x)\Delta x|$ 

$$\int_{r=-\infty}^{r} p(r) dr = \int_{x=-\infty}^{x} g(x) dx$$

$$\int_{r=0}^{r} p(r) dr = \int_{x=-\infty}^{x} g(x) dx$$

$$r = \int_{x = -\infty}^{x} g(x) \, dx$$

# **Probability Numbers from Probability Distributions (2)**



## Fitting Data (first peek)

Need to fit curves to our data (i.e., fit a curve to a histogram) Do this by minimizing the quantity  $\chi^2$ 

$$\chi^2 = \sum_{i=1}^{N} \left( \frac{y_i - y(x_i)}{\sigma_i} \right)^2$$

y<sub>i</sub> is the y value from the <u>curve</u>.

 $y(x_i)$  is the y value from the <u>data</u> at a particular  $x_i$ .

 $\sigma_i$  is the <u>error</u> on the y(xi). (Use sqrt(nmbr of bin counts) in a histogram.)

#### Example:

```
gnuplot> f1(x) = a1* sin(b1*x); a1 = 1.0; b1 = 0.3;
gnuplot> fit f1(x) "trash.dat" using ($1):($3) via a1, b1
```

### **Summary**

Poisson and Gaussian probability distributions.

Pick random numbers from arbitrary probability distribution.

First peek at fitting data.

Don't suffer in silence. Scream for help!!!

