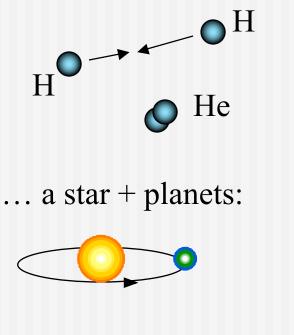

STELLAR EVOLUTION

HOW DO STARS FORM?


- On macroscopic scale
 - Atoms electrically neutral: no electromagnetic forces over long distances
 - Strong and weak nuclear forces restricted to very small distances
 - Only gravity operates on large scales
- large clouds of gas and dust
 - may start contracting due to passage of shock wave
 - if massive enough, will begin contracting on own

STELLAR BIRTH AND YOUTH

- warm protostar forms
 - Possible rotating disk or companion
 - Enormous amount of material collapsing down into star from cloud.
 - As collapse continues
 - Tremendous heat generated in center
 - Smaller star traps some of this heat: so energy of heat can support the material briefly
 - few 100,000 years

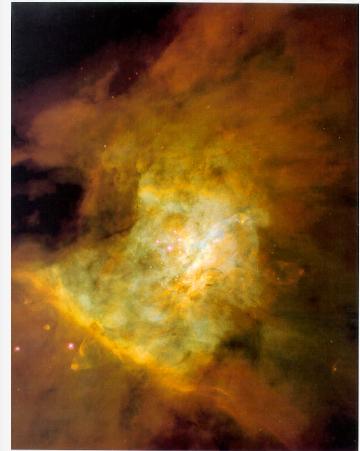
- But heat leaks away and star cannot support itself anymore
 - More contraction, more inense heat
 - thermonuclear reactions start
 - start by fusing Hydrogen into Helium
 - tremendous amount of energy produced
 - gas and radiation pressure
 - balances weight of overlying layers
- Early in life, light output may be unstable
 - But collapse stops for most of star's life

several very irregular variables

X

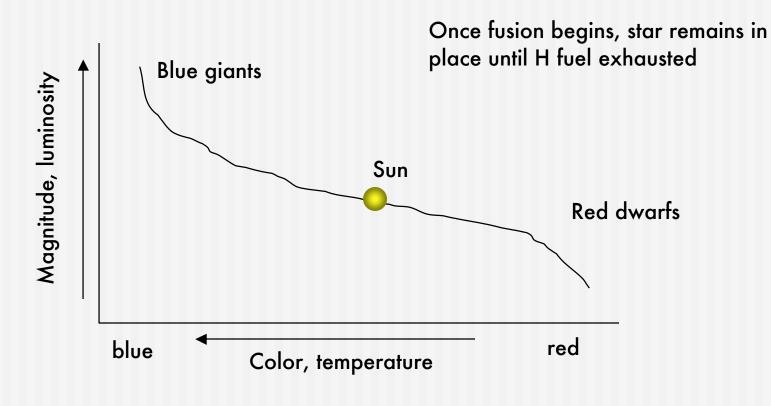
Orion Nebula

Barnard's


Orion

Loop

THE ORION COMPLEX


- enormous star-forming region
 - 300 light-years across
 - surrounded by Barnard's Loop
 - collapse start 3 to 5 million years ago
- Orion Nebula
 - in front of the larger nebula
 - can see many young variable stars

THE LIFE OF A STAR

- Once the star begins burning Hydrogen to form Helium
 - Goes on for some time: 90% of raw material is Hydrogen, so there's lots of it
- Hertzprung-Russell, or color-magnitude diagram

TRANSIENCE

- Stars which are very massive
 - Internal temperatures hotter
 - Larger volume of star converting H -> He
 - Burn much faster
 - Sun's lifetime expected to be 10 billion years
 - So we have 5 more billion, don't worry!
 - Blue giant might live 10 million years, or 1000x shorter!
- Stars do not live forever...

"Change is the essential fact of all existence." Mr. Spock, Star Trek III

RADIATION AND MATTER

- radiation has many forms
 - light
 - massive particles
 - neutrinos
- when interacts with other matter
 - changes its motion
 - hot atoms move faster than cold ones
 - tends to even out differences
 - eg. one part of a cloud hot, and another part cold
 - both regions will become warm
 - eg. one part of a cloud denser than another
 - if warm then there will be more tendency to even out the density

VARIABILITY

- uneasy stability
 - from radiation pressure for most of a star's life
 - Many stars 'pulsate'
 - as burn fuel
 - star makes slight adjustments to internal structure
 - may upset balance of gravity and pressure
 - sometimes changes deviate significantly from stability
 - might generate somewhat more energy
 - outer layer absorbs more radiation
 - star expands and overshoots stable point
 - outer layers absorb less energy and star contracts
 - very regular variations
 - pulsations occur in extreme outer layers
 - brightens when densest, smallest

REGULAR **V**ARIABLES - δ **C**EPHEI

- variations first recorded in 1784
- period 5.36 days
- variation due to alternating expansion and contraction of outer regions
- Henrietta Leavitt at Harvard
 - 1912 realized period-luminosity relation
 - longer variation means a brighter star
 - if know apparent magnitude and period, distance can be calculated
 - permits construction of distance ladder
- several related types of variable
 - also allow determination of intrinsic luminosity