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The naked hulk alongside came,
And the twain were casting dice;
“The game is done! I’ve won! I’ve won!”
Quoth she, and whistles thrice.

Samuel Taylor Coleridge, Rime of the Ancient Mariner

Most of us have had the experience of listening to the weather report and
hearing at one time or another the announcer say ”the chance of rain tomorrow is
70%.” What does this statement mean? Intuitively, you might say that it is more likely
than not that it will rain tomorrow. If we somehow managed to experience many days
like today, then we would expect that more often than not it would rain the next day.
This weather forecast, like all statements about chance, is a kind of guess. Our
ignorance prevents us from making a firm statement about whether or not it definitely
will rain the next day. The theory of probability permits us to make sensible and
quantitative guesses about matters that have a consistent average behavior.

To be clear about what the word “probability” really means and how you
actually calculate it, consider the case where you throw two dice, one green and one
red. Each die face can show any integer in the range from 1 to 6 and you are
interested in the sum of the two die faces. You want to know what the “probability” of
rolling a 5 is because if you can reliably determine this probability you will win much
money and the love of your dreams.  To begin with, what happens when you roll the
pair of dice? Well, the outcome – the sum of the die face - can be any integer between
2 and 12. In our example, there are a number of different ways that a 5 can be rolled.
Call this set of different ways A and we have 

A = {(1,4), (2,3), (3,2), (4,1)},

where the first number in each ordered pair is the number the red die shows and the
second number is the number the green die shows. Each ordered pair of numbers is
called an outcome and each roll of the die pair is called an “experiment.”  You should
be able to convince yourself that there are a total of 36 possible outcomes when
rolling the dice. The red die can show any integer from 1 to 6 and since for each of
these numbers the green die can show any number from 1 to 6, 6 X 6 makes 36.
Useful jargon is that the set of all possible outcomes in an experiment is called the
“sample space.” For our experiment of rolling two dice at a time, the sample space is
the set of 36 possible outcomes or ordered pairs of numbers. Do not confuse the
sample space with the total number of times you happen to roll the dice, which could
be 65 times or 500,000 times.

What does this have to do with calculating the probability of rolling a 5? Well,
by “probability” of a particular outcome of an experiment, we mean our estimate of



the most likely fraction of a number of repeated observations that will yield that
particular outcome. And do how do you calculate this probability? If you think that
each outcome is equally likely, you simply sum up the number of outcomes that will
yield a particular event and then divide by the size of the sample space. In our
example, there are 4 possible outcomes that produce the “event” of rolling a 5 and
there are 36 total possible outcomes in our sample space, so the probability of rolling
a 5 is 4/36 = 1/9. Symbolically, we can write that the probability of event A,
PA =NA /N . Here, NA  is the number of outcomes that produce the event A and

N is the size of the sample space.  

There are subtleties you should be aware of. To assign a probability to some
outcome, it is necessary that the experiment be capable of being repeated. For
example, it is far from clear that the statement, “the probability that David Graham
murdered Adrianne Jones is 65%” (a local murder trial in progress), has any meaning
at all. How do we arrange to run many “experiments” with the participation of the
defendant and the deceased? Is the deceased supposed to be repeatedly resurrected
after her murder so that the experiments can continue? Secondly, as more information
becomes available to us, our probability estimate for a particular outcome in the
experiment can change. Suppose the experiment is that your sister draws a card from
a standard deck and then asks you the probability that it is a queen. If you find out
somehow that your sister nervously twitches her ears when she draws either aces or
queens, then your answer will certainly depend on the motion of her ears. Having the
extra information doesn’t change the experiment in any way (your sister twitches her
ears whether you know it or not), it does however change your knowledge of the
experiment.

When we are playing with our dice, we do not necessarily expect that if we
roll the dice 45 times we will observe that exactly 1/9 of the time the sum of the die
faces will be 5, even if the dice are honest. This does not mean that our notions of
probability are useless. It does mean that to make a probabilistic statement implies
that we have a certain amount of ignorance of the experimental situation. If we
somehow knew more, we could say exactly what the dice were going to do. However,
we can say that if we keep rolling the dice, we do expect that the fraction of times the
die face sum to 5 will indeed approach 1/9. 

So, how many times do we have to roll the dice before we are confident that
our probability calculation is really correct? The answer is there is no specific number
of times we need to roll the dice that will definitely tell us one way or the other that
our probability calculation is absolutely correct! The reason is that there is some
chance, no matter how small, that the dice after many throws happen to come up
summing to 5 at a rate different from 1/9. (For example, if you threw the dice 99,000
times, it is certainly possible that the number of times the dice summed to 5 could be
different from 11,000 even if there is no cheating.) The important point here is that we
expect that the more often we roll the dice, the more likely the summed results
approach our probabilistic predictions. Differences between the actual results of our
experiments and our probabilistic predictions are called “ statistical fluctuations.” If
our probabilistic predictions are sensible, then we expect the statistical fluctuations to
become smaller as the number of times we perform the experiment becomes larger,
i.e., the larger the “statistics” we collect.



To summarize, in today’s lab we want to check two important ideas about
probability. First, we want to check this idea that the probability for an experiment
can be estimated by counting outcomes and using the simple expression
P A =NA /N . We will use rolls of dice as our “experiment.”

Secondly, we would like to verify that as the number of experiments (rolls of
the dice) increases, the statistical fluctuations decrease. If our ideas of probability are
sensible, then we expect that our theoretical estimate of the fraction of time a
particular sum shows should more closely match the actual observations as we
perform more and more experiments.

Equipment: glass jar and 1 pair dice.

Procedure:

You will test our ideas about probability using a jar containing a pair of dice.
Each of you should have your own jar. A “roll” of the dice just means you briefly
shake the jar and let the dice come to rest. You are interested in the sum of the
numbers showing on the dice. 

1. Fill out the second row in table 1. Calculate the different outcomes on a piece of
scratch paper and just enter the results in the table. 

2. Complete table 1. For the 3rd row, keep your answers in fractional form for now.

3. Now you will perform many individual experiments by shaking the glass jar and
observing the dice sum after each “roll.” Perform at least 50 rolls of the dice and
record how often you get the sums 2 – 12 in row 2 of table 2 (“observed number
of events”). Using the total number of rolls, fill out row 3 of table 2 (“relative
fraction of observed events”). Using a piece of scratch paper to tally the results of
the individual experiments will make your life easier.

4. Move on to table 3, “Class Rolls.” You will need to chat with all your fascinating
neighbors. Fill out row 2 by summing together the results for each event (a
particular sum) from everyone in the lab. In this way you will have results from
hundreds of rolls. Using the total number of rolls in table 3, compute the entries
for row 3. 

5. Add up all the probabilities for all possible outcomes in table 1. (This means just
sum the bottom row together.) Question 1. What answer do you get? Clearly
explain what this number means.



6. Compare each box in the last row of table 1 with its corresponding box in table 2.
Question 2. Do you see any similarities? Do you see any differences? Question 3.
For what outcome is the difference between theory and your private rolls the
largest?

7. Now compare each box in the last row of table 1 with its corresponding box in
table 3. Question 4. Do you see any similarity in the pairs of boxes? What is it?
Question 5. In general, is the agreement between the box pairs of table 1 and table
2 better or worse than the agreement between box pairs of table 1 and table 3?
Give reasons for your answer. Explain why the agreement  (or disagreement)
makes sense based on the ideas of probability.

8. Question 6. Calculate the probability of the dice sum showing a sum between 2
and 5 inclusive. (Express your answer as P(2-5) = …) Use table 1 to help you.
Question 7. Using the results of table 3, does the observed fraction of times the
dice showed a sum of 2-5 agree or disagree with your prediction for its
probability? Explain your reasoning. 

9. Question 8. We said above when explaining our formula for calculating the
probability of event A to happen that we assumed that all outcomes of an
experiment were equally likely. That is, we assumed we were just as likely to roll
a (2,1) as a (6,4). Suppose now that this is not true because, say, someone cheated
and loaded the dice so that 5’s are very likely to show up. Do you think this
circumstance would our effect our formula? Explain why or why not.
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Table 2. Private Rolls.
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Table 3. Class Rolls.

Sum 2 3 4 5 6 7 8 9 10 11 12
Observed number

of events
Observed relative
Fraction of events
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