\[f(x) = \text{some function} \]

\[f(x) = \text{some other function} \]

\[f(x) = \text{some equation} \]

\[f(x) = \text{some formula} \]

\[f(x) = \text{some integral} \]

\[f(x) = \text{some derivative} \]

\[f(x) = \text{some limit} \]

\[f(x) = \text{some series} \]

\[f(x) = \text{some product} \]

\[f(x) = \text{some set} \]

\[f(x) = \text{some mapping} \]

\[f(x) = \text{some transformation} \]

\[f(x) = \text{some condition} \]

\[f(x) = \text{some hypothesis} \]

\[f(x) = \text{some conclusion} \]

\[f(x) = \text{some proof} \]

\[f(x) = \text{some derivation} \]

\[f(x) = \text{some example} \]

\[f(x) = \text{some counterexample} \]

\[f(x) = \text{some exercise} \]

\[f(x) = \text{some summary} \]

\[f(x) = \text{some review} \]

\[f(x) = \text{some bibliography} \]

\[f(x) = \text{some appendix} \]

\[f(x) = \text{some glossary} \]

\[f(x) = \text{some index} \]

\[f(x) = \text{some abstract} \]

\[f(x) = \text{some conclusion} \]

\[f(x) = \text{some reference} \]
Michelson Interferometer

adjust to produce interference changes at observer

if m = \frac{1}{4}, path difference is \frac{\lambda}{2} \rightarrow change in phase between L1 + L2

\rightarrow see a dark center \rightarrow bright, for instance

\rightarrow if know d, find \lambda

use \lambda to measure speed of light