

History:

Discovery of J/ ψ , Upsilon, W/Z, and "New Physics" ???

Calculation of $q q \rightarrow \mu^+ \mu^-$ in the Parton Model

Scaling form of the cross section

Rapidity, longitudinal momentum, and x_F

Comparison with data:

NLO QCD corrections essential (the K-factor) $\sigma(pd)/\sigma(pp)$ important for d-bar/ubar W Rapidity Asymmetry important for slope of d/u at large x Where are we going? P_T Distribution W-mass measurement Resummation of soft gluons

Historical

Background

Our story begins in the late 1960's at CERN

Brookhaven National Lab Alternating Gradient Synchrotron

An Early Experiment:

with the decay of the W into muone as the signature 1/2. Failure to observe a muon signal from any

What is the explanation???

In DIS, we have two choices for an interpretation:

The Parton Model

Discovery of the J/Psi Particle

(Received 12 November 1974)

We report the observation of a heavy particle J, with mass m = 3.1 GeV and width approximately zero. The observation was made from the reaction $p + \text{Be} \rightarrow e^+ + e^- + x$ by measuring the e^+e^- mass spectrum with a precise pair spectrometer at the Brookhaven National Laboratory's 30-GeV alternating-gradient synchrotron.

This experiment is part of a large program to

daily with a thin Al foil. The beam spot

very narrow width \Rightarrow long lifetime

The November Revolution

currents. The run at reduced current was taken two months later than the normal run.

More Discoveries with Drell-Yan

1974: The J/Psi (charm) discovery

 $p{+}N \rightarrow J/\psi$

... 1976 Nobel Prize

1977: The Upsilon (bottom) discovery

$$p+N \rightarrow \Upsilon$$

1983: The W and Z discovery

 $p + \overline{p} \rightarrow W/Z$

... 1984 Nobel Prize

W/Z in the electron channel

- 1139 Z \rightarrow ee candidates . |η^e|<1.1, E-25 GeV, no
 - track match required
- ε(Z)≈8%, bkgd ~ 18%

 $\sigma(Z)Br(Z \rightarrow ee) = 294 \pm 11(N_z) \pm 8(sys) \pm 29(lumi)$ pb

UIC

The Future of Drell-Yan

Where do we find

New Physics??

- New Higgs Bosons
- New W' or Z'
- SUSY
- ... unknown...

- High Mass Dileptons
 - electrons & muons used
- Sensitive to Z' and Randall-Sundrum Graviton
- No excess observed

Let's

Calculate

First, we'll compute the partonic $\hat{\sigma}$ in the partonic CMS

Gathering factors and contracting $g^{\mu\nu}$, we obtain:

$$-iM = iQ_i \frac{e^2}{q^2} \{\overline{v}(p_2) \gamma^{\mu} u(p_1)\} \{\overline{u}(p_3) \gamma_{\mu} v(p_4)\}$$

Squaring, and averaging over spin and color,

$$\overline{|M|^2} = \left(\frac{1}{2}\right)^2 3\left(\frac{1}{3}\right)^2 Q_i^2 \frac{e^4}{q^4} Tr\left[p_{\overline{2}}\gamma^{\mu}p_{\overline{1}}\gamma^{\nu}\right] Tr\left[p_{\overline{3}}\gamma_{\mu}p_{\overline{4}}\gamma_{\nu}\right]$$

Let's work out some parton level kinematics

$$p_{1} = \frac{\sqrt{\hat{s}}}{2} (1,0,0,+1)$$

$$p_{2} = \frac{\sqrt{\hat{s}}}{2} (1,0,0,-1)$$

$$p_{3} = \frac{\sqrt{\hat{s}}}{2} (1,+\sin(\theta),0,+\cos(\theta))$$

$$p_{4} = \frac{\sqrt{\hat{s}}}{2} (1,-\sin(\theta),0,-\cos(\theta))$$

Defining the Mandelstam variables ...

$$\begin{aligned} \hat{s} &= (p_1 + p_2)^2 = (p_3 + p_4)^2 & \hat{t} &= -\frac{\hat{s}}{2} \left(1 - \cos(\theta)\right) \\ \hat{t} &= (p_1 - p_3)^2 = (p_2 - p_4)^2 & \hat{u} &= -\frac{\hat{s}}{2} \left(1 + \cos(\theta)\right) \\ \hat{u} &= (p_1 - p_4)^2 = (p_2 - p_3)^2 & \hat{u} &= -\frac{\hat{s}}{2} \left(1 + \cos(\theta)\right) \end{aligned}$$

Manipulating the traces, we find ...

$$Tr\left[p_{\overline{2}}\gamma^{\mu}p_{\overline{1}}\gamma^{\nu}\right] Tr\left[p_{\overline{3}}\gamma_{\mu}p_{\overline{4}}\gamma_{\nu}\right] = 4\left[p_{1}^{\mu}p_{2}^{\nu}+p_{2}^{\mu}p_{1}^{\nu}-g^{\mu\nu}(p_{1}\cdot p_{2})\right] \times 4\left[p_{3}^{\mu}p_{4}^{\nu}+p_{4}^{\mu}p_{3}^{\nu}-g^{\mu\nu}(p_{3}\cdot p_{4})\right] = 2^{5}\left[(p_{1}\cdot p_{3})(p_{2}\cdot p_{4})+(p_{1}\cdot p_{4})(p_{2}\cdot p_{3})\right] = 2^{3}\left[\hat{t}^{2}+\hat{u}^{2}\right]$$

Where we have used:

$$p_1^2 = p_2^2 = p_3^2 = p_4^2 = 0$$

$$\hat{s} = 2(p_1 \cdot p_2) = 2(p_3 \cdot p_4)$$
$$\hat{t} = 2(p_1 \cdot p_3) = 2(p_2 \cdot p_4)$$
$$\hat{u} = 2(p_1 \cdot p_4) = 2(p_2 \cdot p_3)$$

Putting all the pieces together, we have:

$$\overline{|M|^{2}} = Q_{i}^{2} \alpha^{2} \frac{2^{5} \pi^{2}}{3} \left(\frac{\hat{t}^{2} + \hat{u}^{2}}{\hat{s}^{2}}\right) \qquad \forall$$

with

$$q^{2} = (p_{1} + p_{2})^{2} = \hat{s}$$
$$\alpha = \frac{e^{2}}{4\pi}$$

... and put it together to find the cross section

$$d\hat{\sigma} \simeq \frac{1}{2\hat{s}} \overline{|M|^2} d\Gamma$$
 In the partonic CMS system

$$d\Gamma = \frac{d^3 p_3}{(2\pi)^3 2E_3} \frac{d^3 p_4}{(2\pi)^3 2E_4} (2\pi)^4 \delta(p_1 + p_2 - p_3 - p_4) = \frac{d\cos(\theta)}{16\pi}$$

Recall,

$$\hat{t} = \frac{-\hat{s}}{2} \left(1 - \cos(\theta) \right) \quad and \quad \hat{u} = \frac{-\hat{s}}{2} \left(1 + \cos(\theta) \right)$$

so, the differential cross section is ...

$$\frac{d\,\widehat{\sigma}}{d\cos(\theta)} = Q_i^2 \,\alpha^2 \,\frac{\pi}{6} \,\frac{1}{\widehat{s}} \left(1 + \cos^2(\theta)\right)$$

and the total cross section is ...

$$\widehat{\sigma} = Q_i^2 \alpha^2 \frac{\pi}{6} \frac{1}{\widehat{s}} \int_{-1}^{1} d\cos(\theta) \left(1 + \cos^2(\theta)\right) = \frac{4\pi \alpha^2}{9\widehat{s}} Q_i^2 \equiv \widehat{\sigma}_0$$

Some Homework:

#1) Show:

$$\frac{d^{3}p}{(2\pi)^{3}2E} = \frac{d^{4}p}{(2\pi)^{4}} (2\pi) \delta^{+}(p^{2}-m^{2})$$

This relation is often useful as the RHS is manifestly Lorentz invariant

#2) Show that the 2-body phase space can be expressed as:

$$d\Gamma = \frac{d^{3}p_{3}}{(2\pi)^{3}2E_{3}} \frac{d^{3}p_{4}}{(2\pi)^{3}2E_{4}} (2\pi)^{4} \delta(p_{1}+p_{2}-p_{3}-p_{4}) = \frac{d\cos(\theta)}{16\pi}$$

Note, we are working with massless partons, and θ is in the partonic CMS frame

#3) Let's work out the general $2\rightarrow 2$ kinematics for general masses.

a) Start with the incoming particles.

Show that these can be written in the general form:

$$p_1 = (E_1, 0, 0, +p) \qquad p_1^2 = m_1^2$$
$$p_2 = (E_2, 0, 0, -p) \qquad p_2^2 = m_2^2$$

... with the following definitions:

$$E_{1,2} = \frac{\hat{s} \pm m_1^2 \mp m_2^2}{2\sqrt{\hat{s}}} \quad p = \frac{\Delta(\hat{s}, m_1^2, m_2^2)}{2\sqrt{\hat{s}}}$$
$$\Delta(a, b, c) = \sqrt{a^2 + b^2 + c^2 - 2(ab + bc + ca)}$$

Note that $\Delta(a,b,c)$ is symmetric with respect to its arguments, and involves the only invariants of the initial state: s, m_1^2 , m_2^2 .

b) Next, compute the general form for the final state particles, p_3 and p_4 . Do this by first aligning p_3 and p_4 along the z-axis (as p_1 and p_2 are), and then rotate about the y-axis by angle θ .

What does the angular dependence tell us?

Observe, the angular dependence: $q + \overline{q} \rightarrow e^+ + e^-$

$$\frac{d\,\widehat{\sigma}}{d\cos\left(\theta\right)} = Q_i^2 \,\alpha^2 \,\frac{\pi}{6} \,\frac{1}{\widehat{s}} \left(1 + \cos^2(\theta)\right)$$

Characteristic of scattering of spin 1/2 constitutients by a spin 1 vector

Note, for the photon, the mirror image of the above is also valid; hence the symmetric distribution. The W has V-A couplings, so we'll find: $(1+\cos\theta)^2$

Next, we'll compute the hadronic CMS

Kinematics in the Hadronic Frame

$$P_{1} = \frac{\sqrt{s}}{2} (1,0,0,+1) \qquad P_{1}^{2} = 0$$
$$P_{2} = \frac{\sqrt{s}}{2} (1,0,0,-1) \qquad P_{2}^{2} = 0$$

$$s = (P_1 + P_2)^2 = \frac{\hat{s}}{x_1 x_2} = \frac{\hat{s}}{\tau}$$

$$\tau = x_1 x_2 = \frac{\hat{s}}{s} \equiv \frac{Q^2}{s}$$

• Fractional energy² between partonic and hadronic system

$$\frac{d\sigma}{dQ^2} = \sum_{q,\overline{q}} \int dx_1 \int dx_2 \left\{ q(x_1)\overline{q}(x_2) + \overline{q}(x_1)q(x_2) \right\} \widehat{\sigma}_0 \,\delta(Q^2 - \hat{s})$$
Hadronic Parton Partonic cross distribution cross section functions section

Scaling form of the Drell-Yan Cross Section

Using:
$$\widehat{\sigma}_0 = \frac{4\pi\alpha^2}{9\widehat{s}}Q_i^2$$
 and $\delta(Q^2 - \widehat{s}) = \frac{1}{sx_1}\delta(x_2 - \frac{\tau}{x_1})$

we can write the cross section in the scaling form:

$$Q^{4} \frac{d\sigma}{dQ^{2}} = \frac{4\pi\alpha^{2}}{9} \sum_{q,\bar{q}} Q_{i}^{2} \int_{\tau}^{1} \frac{dx_{1}}{x_{1}} \tau \left\{ q(x_{1})\overline{q}(\tau/x_{1}) + \overline{q}(x_{1})q(\tau/x_{1}) \right\}$$

Notice the RHS is a function of only τ , not Q.

This quantity should lie on a universal scaling curve.

Cf., DIS case, & scattering of point-like constituents Partonic CMS has longitudinal momentum w.r.t. the hadron frame

$$p_1 = x_1 P_1 \qquad p_2 = x_2 P_2$$

$$p_{12}$$

$$p_{12} = (p_1 + p_2) = (E_{12}, 0, 0, p_L)$$
$$E_{12} = \frac{\sqrt{s}}{2}(x_1 + x_2)$$
$$p_L = \frac{\sqrt{s}}{2}(x_1 - x_2) \equiv \frac{\sqrt{s}}{2}x_F$$

 x_F is a measure of the longitudinal momentum

The rapidity is defined as: $x_{1,2} = \sqrt{\tau} e^{\pm y}$ $y = \frac{1}{2} \ln \left\{ \frac{E_{12} + p_L}{E_{12} - p_L} \right\} = \frac{1}{2} \ln \left\{ \frac{x_1}{x_2} \right\}$ $dx_1 dx_2 = d\tau dy$ $dQ^2 dx_F = dy d\tau s \sqrt{x_F^2 + 4\tau}$

$$\frac{d\sigma}{dQ^{2} dx_{F}} = \frac{4\pi\alpha^{2}}{9Q^{4}} \frac{1}{\sqrt{x_{F}^{2} + 4\tau}} \tau \sum_{q,\bar{q}} Q_{i}^{2} \{q(x_{1})\bar{q}(\tau/x_{1}) + \bar{q}(x_{1})q(\tau/x_{1})\}$$

So, we're ready to compare with data

(or so we think...)

Let's compare data and theory

Table 1.2:	Experimental	K-factors.
------------	--------------	------------

Expe	eriment	Interaction	Beam Momentum	$K = \sigma_{\rm meas.}/\sigma_{\rm DY}$
E288	[Kap 78]	p P t	$300/400~{ m GeV}$	~ 1.7
WA39	[Cor 80]	$\pi^{\pm} W$	$39.5~{ m GeV}$	~ 2.5
E439	[Smi 81]	p W	$400~{ m GeV}$	1.6 ± 0.3
NA3	[Bad 83]	$(\bar{p} - p)Pt$	$150 { m GeV}$	2.3 ± 0.4
		$p \ Pt$	$400~{ m GeV}$	$3.1\pm0.5\pm0.3$
		$\pi^{\pm} Pt$	$200~{ m GeV}$	2.3 ± 0.5
		$\pi^- Pt$	$150 { m GeV}$	2.49 ± 0.37
		$\pi^- Pt$	$280 { m GeV}$	2.22 ± 0.33
NA10	[Bet 85]	$\pi^- W$	$194~{ m GeV}$	$\sim 2.77 \pm 0.12$
E326	[Gre 85]	$\pi^- W$	$225~{ m GeV}$	$2.70 \pm 0.08 \pm 0.40$
E537	[Ana 88]	$\bar{p} W$	$125~{ m GeV}$	$2.45 \pm 0.12 \pm 0.20$
E615	[Con 89]	$\pi^- W$	$252~{ m GeV}$	1.78 ± 0.06

Oooops,

we need the

QCD corrections

$$K = 1 + \frac{2\pi\alpha}{3}(...) + ... = ? = e^{2\pi\alpha}/3$$

p + Cu at 800 GeV

p + d at 800 GeV

pp & pN processes sensitive to anti-quark distributions

A. D. Martin, R. G. Roberts, W. J. Stirling and R. S. Thorne,
Eur. Phys. J. C23, 73 (2002);
Eur. Phys. J. C14, 133 (2000);
Eur. Phys. J. C4, 463 (1998)

Drell-Yan can give us unique and detailed information about PDF's.

We'll now examine two examples:

1) Ratio of pp/pd cross section

2) W Rapidity Asymmetry

A measurement of $\overline{d}(x)/\overline{u}(x)$ Antiquark asymmetry in the Nucleon Sea FNAL E866/NuSea

ACU, ANL, FNAL, GSU, IIT, LANL, LSU, NMSU, UNM, ORNL, TAMU, Valpo.

800 GeV
$$p + p$$
 and $p + d \rightarrow \mu^+ \mu^- X$

 $u \Leftrightarrow d$ Obtain the neutron PDF via isospin symmetry: $\overline{u} \Leftrightarrow \overline{d}$ $\sigma^{pp} \propto \frac{4}{9} u(x_1) \overline{u}(x_2) + \frac{1}{9} d(x_1) \overline{d}(x_2)$ In the limit $x_1 >> x_2$: $\sigma^{pn} \propto \frac{4}{9} u(x_1) \overline{d}(x_2) + \frac{1}{9} d(x_1) \overline{u}(x_2)$ For the ratio we have: $\frac{\sigma^{pd}}{2\sigma^{pp}} \approx \frac{1}{2} \frac{\left(1 + \frac{1}{4}\frac{d_1}{u_1}\right)}{\left(1 + \frac{1}{4}\frac{d_1}{u_1}\frac{\overline{d}_2}{\overline{u}_2}\right)} \quad \left(1 + \frac{\overline{d}_2}{\overline{u}_2}\right) \approx \frac{1}{2} \left(1 + \frac{\overline{d}_2}{\overline{u}_2}\right)$

As promised, this provides information about the sea-quark distributions

$$\frac{\sigma^{pd}}{2\,\sigma^{pp}} \approx \frac{1}{2} \left(1 + \frac{\overline{d}_2}{\overline{u}_2} \right)$$

EXERCISE: Verify the above.

Does the theory match the data???

E866 required significant changes in the hi-x sea distributions

With increased flexibility in the parameterization of the sea-quark distributions, good fits are obtained

E.A. Hawker, et al. [FNAL E866/NuSea Collaboration], Measurement of the light antiquark flavor asymmetry in the nucleon sea, PRL 80, 3715 (1998)

H. L. Lai, et al. } [CTEQ Collaboration], Global {QCD} analysis of parton structure of the nucleon: CTEQ5 parton distributions, EPJ C12, 375 (2000)

2) W Rapidity Asymmetry

Where do the W's and Z's come from ???

$$\frac{d\sigma}{dy}(W^{\pm}) = \frac{2\pi}{3} \frac{G_F}{\sqrt{2}} \sum_{q\bar{q}} |V_{q\bar{q}}|^2 \left[q(x_a) \bar{q}(x_b) + q(x_b) \bar{q}(x_a)\right]$$

Havour decomposition of W cross sections

$$\frac{u(x_a)}{proton} \frac{d(x_b)}{W^+} \text{ anti-proton}$$
For anti-proton:

$$u(x) \Leftrightarrow \bar{u}(x) \quad d(x) \Leftrightarrow \bar{d}(x)$$
Therefore

$$\frac{d\sigma}{dy}(W^+) \approx \frac{2\pi}{3} \frac{G_F}{\sqrt{2}} \left[u(x_a) d(x_b)\right]$$

$$\frac{d\sigma}{dy}(W^-) \approx \frac{2\pi}{3} \frac{G_F}{\sqrt{2}} \left[d(x_a) u(x_b)\right]$$
A.D. Martin, R.G. Roberts, W.J. Strong, W.S. There, Strong, Str

Eur. Phys. J. C23, 73 (2002); Eur. Phys. J. C4, 463 (1998)

A bit of calculation

$$A(y) = \frac{\frac{d\sigma}{dy}(W^{+}) - \frac{d\sigma}{dy}(W^{-})}{\frac{d\sigma}{dy}(W^{+}) + \frac{d\sigma}{dy}(W^{-})}$$

With the previous approximation,

$$A \approx \frac{u(x_a)d(x_b) - d(x_a)u(x_b)}{u(x_a)d(x_b) + d(x_a)u(x_b)} =$$

where
$$R_{du}(x) = \frac{d(x)}{u(x)}$$

We can make Taylor expansions:

Thus, the asymmetry is:

EXERCISE: Verify the above.

$$\frac{R_{du}(x_b) - R_{du}(x_a)}{R_{du}(x_b) + R_{du}(x_a)}$$

$$x_{1,2} = x_0 e^{\pm y} \simeq x_0 (1 \pm y)$$
$$R_{du}(x_{1,2}) \approx R_{du}(x_0) \pm y x_0 R'_{du}(\sqrt{\tau})$$
$$A(y) = -y x_0 \frac{R'_{du}(x_0)}{R_{du}(x_0)}$$

Charged Lepton Asymmetry

Unfortunately, we don't measure the W directly since W→ev.

Still the lepton contains important information

$$A(y) = \frac{\frac{d\sigma}{dy}(l^{+}) - \frac{d\sigma}{dy}(l^{-})}{\frac{d\sigma}{dy}(l^{+}) + \frac{d\sigma}{dy}(l^{-})}$$

d/u Ratio at High-x

The form of the d/u ratio at large x as a function of

1) Parameterization

2) Nuclear Corrections

S. Kuhlmann, et al., Large-x parton distributions, PL B476, 291 (2000)

History:

Discovery of J/ ψ , Upsilon, W/Z, and "New Physics" ???

Calculation of $q q \rightarrow \mu^+ \mu^-$ in the Parton Model

Scaling form of the cross section

Rapidity, longitudinal momentum, and x_F

Comparison with data:

NLO QCD corrections essential (the K-factor) $\sigma(pd)/\sigma(pp)$ important for d-bar/ubar W Rapidity Asymmetry important for slope of d/u at large x Where are we going? P_T Distribution W-mass measurement Resummation of soft gluons