
target proton
beam
proton

Fred Olness SMU

Part I: Drell-Yan Process

History:

Discovery of J/ ψ, Upsilon, W/Z, and "New Physics" ???
Calculation of $q q \rightarrow \mu^{+} \mu^{-}$in the Parton Model
Scaling form of the cross section
Rapidity, longitudinal momentum, and x_{F}
Comparison with data:
NLO QCD corrections essential (the K-factor)
$\sigma(\mathrm{pd}) / \sigma(\mathrm{pp})$ important for d-bar/ubar
W Rapidity Asymmetry important for slope of d / u at large x
Where are we going?
P_{T} Distribution
W-mass measurement
Resummation of soft gluons

Historical

Background

Our story begins in the late 1960's at CERN

Brookhaven National Lab Alternating Gradient Synchrotron

An Early Experiment:

The Goal:

$$
\begin{aligned}
& \mathbf{p}+\mathbf{N} \rightarrow \mathbf{W}+\mathbf{X} \\
& \mathbf{p}+\mathbf{N} \rightarrow \mu^{+} \mu^{-}+\mathbf{X}
\end{aligned}
$$

They found:
at BNL AGS

Volume 27, Number 11
PHYSICAL REVIEW LETTERS
13 September 1971

Production of Intermediate Bosons in Strong Interactions*
L. M. Lederman and B. G. Pope ${ }^{+}$

Columbia University, New York, New York 10533 (Received 14 June 1971)
$\mathrm{M}_{\mu \mu} \mathrm{GeV}$
Several searches for the weak intermediate boson (W) have been carried out using the reaction $p+Z \rightarrow W+$ anything,
(1)

What is the explanation???

In DIS, we have two choices for an interpretation:

Conserved Current Interactions

The Parton Model What about Drell-Yan???

???

The Parton Model

Discovery of the J/Psi Particle

The Process: $\mathbf{p}+\mathbf{B e} \rightarrow \mathbf{e}^{+} \mathrm{e}^{-} \mathbf{X}$

Volume 33, Number 23
PHYSICAL REVIEW LETTERS

Experimental Observation of a Heavy Particle $J \uparrow$
J. J. Aubert, U. Becker, P. J. Biggs, J. Burger, M. Chen, G. Everhart, P. Goldhagen J. Leong, T. McCorriston, T. G. Rhoades, M. Rohde, Samuel C. C. Ting, and Sau Lan I Labonatory for Nuclear Science and Department of Physics, Massachusetls Institute of Technolog Cambridge, Massachusetts 02139
and
Y. Y. Lee

Brookhaven National Labovatory, Upton, New York 11973
(Received 12 November 1974)
We roport the observation of a heavy particle J, with mass $n=3.1 \mathrm{GeV}$ and width approximately zero. The observation was made from the reaction $p+\mathrm{Be} \rightarrow e^{+}+e^{-}+x$ by measuring the $e^{+} e^{-}$mass spectrum with a precise pair spectrometer at the Brookhaven National Laboratory's $30-\mathrm{GeV}$ alternating-gradient synchrotron.

This experiment is part of a large program to
dally with a thin Al foil. The beam spot

very narrow width
 \Rightarrow long lifetime

FIG. 2, Mass spectrum showing the existence of J. Results from two spectrometer settings are plotted showing that the peak is independent of spectrometer currents. The run at reduced current was taken two months later than the normal run.

The November Revolution

1974: The J/Psi (charm) discovery
... 1976 Nobel Prize

1977: The Upsilon (bottom) discovery

1983: The W and Z discovery

$$
\mathrm{p}+\overline{\mathrm{p}} \rightarrow \mathrm{~W} / \mathrm{Z}
$$

... 1984 Nobel Prize

W/Z in the electron channel

- $1139 \mathrm{Z} \rightarrow$ ee candidates
- $\eta^{\mathrm{e}} \mathrm{k} 11.1, \mathrm{E}_{\mathrm{T}} 25 \mathrm{GeV}$, no track match required
- $\varepsilon(Z) \approx 8 \%$, bkgd ~ 18%

- $27370 \mathrm{~W} \rightarrow$ ev candidates
- $\left|\eta^{\ell}\right| 11.1, E_{T} \& E_{T}>25 \mathrm{GeV}$
- $\varepsilon(W) \approx 16 \%$
- bkgd ~ 3\% QCD, ~1.5\% τ
$\sigma(\mathrm{W}) \mathrm{Br}(\mathrm{W} \rightarrow e v)=\mathbf{3 0 5 4} \pm \mathbf{1 0 0}\left(\mathrm{N}_{\mathrm{w}}\right) \pm \mathbf{8 6}$ (sys) $\pm \mathbf{3 0 5}$ (lumi) pb
$\sigma(Z) B r(Z \rightarrow e e)=294 \pm 11\left(N_{z}\right) \pm 8$ (sys) $\pm \mathbf{2 9}$ (lumi) pb
LHC Symposium 5/2/2003
C. Gerber (UIC)

The Future of Drell-Yan

Where do we find

New Physics??

- New Higgs Bosons
- New W' or Z'
- SUSY
- ... unknown...

Search in Drell-Yan Spectrum

- High Mass Dileptons

- electrons \& muons used

- Sensitive to Z' and Randall-Sundrum Graviton
- No excess observed

Let's

Calculate

First, we'll compute

the partonic $\hat{\sigma}$ in the

 partonic CMSLet's compute the Born process: $\quad q+\bar{q} \rightarrow e^{+}+e^{-}$

Gathering factors and contracting $g^{\mu \nu}$, we obtain:

$$
-i M=i Q_{i} \frac{e^{2}}{q^{2}}\left\{\bar{v}\left(p_{2}\right) \gamma^{\mu} u\left(p_{1}\right)\right\}\left\{\bar{u}\left(p_{3}\right) \gamma_{\mu} v\left(p_{4}\right)\right\}
$$

Squaring, and averaging over spin and color,

$$
\overline{|M|^{2}}=\left(\frac{1}{2}\right)^{2} 3\left(\frac{1}{3}\right)^{2} Q_{i}^{2} \frac{e^{4}}{q^{4}} \operatorname{Tr}\left[p_{2} \gamma^{\mu} p_{1} \gamma^{\nu}\right] \operatorname{Tr}\left[p_{3} \gamma_{\mu} p_{4} \gamma_{\nu}\right]
$$

Let's work out some parton level kinematics

$$
\begin{aligned}
& p_{1}=\frac{\sqrt{\hat{s}}}{2}(1,0,0,+1) \\
& p_{2}=\frac{\sqrt{\hat{s}}}{2}(1,0,0,-1) \\
& p_{3}=\frac{\sqrt{\hat{s}}}{2}(1,+\sin (\theta), 0,+\cos (\theta)) \\
& p_{1}^{2}=p_{2}^{2}=p_{3}^{2}=p_{4}^{2}=0
\end{aligned}
$$

Defining the Mandelstam variables ...

$$
\begin{array}{ll}
\hat{s}=\left(p_{1}+p_{2}\right)^{2}=\left(p_{3}+p_{4}\right)^{2} & \hat{t}=-\frac{\hat{s}}{2}(1-\cos (\theta)) \\
\hat{t}=\left(p_{1}-p_{3}\right)^{2}=\left(p_{2}-p_{4}\right)^{2} & \hat{u}=-\frac{\hat{s}}{2}(1+\cos (\theta)) \\
\widehat{u}=\left(p_{1}-p_{4}\right)^{2}=\left(p_{2}-p_{3}\right)^{2} &
\end{array}
$$

We'll now compute the matrix element M

Manipulating the traces, we find ...

$$
\begin{aligned}
& \operatorname{Tr}\left[p_{2} \gamma^{\mu} p_{1} \gamma^{\nu}\right] \operatorname{Tr}\left[p_{3} \gamma_{\mu} p_{4} \gamma_{\nu}\right] \\
& =4\left[p_{1}^{\mu} p_{2}^{\nu}+p_{2}^{\mu} p_{1}^{\nu}-g^{\mu \nu}\left(p_{1} \cdot p_{2}\right)\right] \times 4\left[p_{3}^{\mu} p_{4}^{\nu}+p_{4}^{\mu} p_{3}^{v}-g^{\mu \nu}\left(p_{3} \cdot p_{4}\right)\right] \\
& =2^{5}\left[\left(p_{1} \cdot p_{3}\right)\left(p_{2} \cdot p_{4}\right)+\left(p_{1} \cdot p_{4}\right)\left(p_{2} \cdot p_{3}\right)\right] \\
& =2^{3}\left[\hat{t}^{2}+\hat{u}^{2}\right]
\end{aligned}
$$

Where we have used:

$$
p_{1}^{2}=p_{2}^{2}=p_{3}^{2}=p_{4}^{2}=0
$$

$$
\begin{aligned}
& \hat{s}=2\left(p_{1} \cdot p_{2}\right)=2\left(p_{3} \cdot p_{4}\right) \\
& \hat{t}=2\left(p_{1} \cdot p_{3}\right)=2\left(p_{2} \cdot p_{4}\right) \\
& \hat{u}=2\left(p_{1} \cdot p_{4}\right)=2\left(p_{2} \cdot p_{3}\right)
\end{aligned}
$$

Putting all the pieces together, we have:

$$
\overline{|M|^{2}}=Q_{i}^{2} \alpha^{2} \frac{2^{5} \pi^{2}}{3}\left(\frac{\hat{t}^{2}+\hat{u}^{2}}{\hat{s}^{2}}\right) \quad \text { with }
$$

$$
\begin{gathered}
q^{2}=\left(p_{1}+p_{2}\right)^{2}=\hat{s} \\
\alpha=\frac{e^{2}}{4 \pi}
\end{gathered}
$$

$$
\begin{gathered}
d \widehat{\sigma} \simeq \frac{1}{2 \hat{s}} \overline{|M|^{2}} d \Gamma \\
\begin{array}{c}
\text { In the partonic } \\
\text { CMS system }
\end{array} \\
d \Gamma=\frac{d^{3} p_{3}}{(2 \pi)^{3} 2 E_{3}} \frac{d^{3} p_{4}}{(2 \pi)^{3} 2 E_{4}}(2 \pi)^{4} \delta\left(p_{1}+p_{2}-p_{3}-p_{4}\right)=\frac{d \cos (\theta)}{16 \pi}
\end{gathered}
$$

Recall,

$$
\hat{t}=\frac{-\hat{s}}{2}(1-\cos (\theta)) \quad \text { and } \quad \hat{u}=\frac{-\hat{s}}{2}(1+\cos (\theta))
$$

so, the differential cross section is ...

$$
\frac{d \widehat{\sigma}}{d \cos (\theta)}=Q_{i}^{2} \alpha^{2} \frac{\pi}{6} \frac{1}{\hat{s}}\left(1+\cos ^{2}(\theta)\right)
$$

and the total cross section is ...

$$
\widehat{\sigma}=Q_{i}^{2} \alpha^{2} \frac{\pi}{6} \frac{1}{\hat{s}} \int_{-1}^{1} d \cos (\theta)\left(1+\cos ^{2}(\theta)\right)=\frac{4 \pi \alpha^{2}}{9 \hat{s}} Q_{i}^{2} \equiv \widehat{\sigma}_{0}
$$

Some Homework:

\#1) Show:

$$
\frac{d^{3} p}{(2 \pi)^{3} 2 E}=\frac{d^{4} p}{(2 \pi)^{4}}(2 \pi) \delta^{+}\left(p^{2}-m^{2}\right)
$$

This relation is often useful as the RHS is manifestly Lorentz invariant
\#2) Show that the 2-body phase space can be expressed as:

$$
d \Gamma=\frac{d^{3} p_{3}}{(2 \pi)^{3} 2 E_{3}} \frac{d^{3} p_{4}}{(2 \pi)^{3} 2 E_{4}}(2 \pi)^{4} \delta\left(p_{1}+p_{2}-p_{3}-p_{4}\right)=\frac{d \cos (\theta)}{16 \pi}
$$

Note, we are working with massless partons, and θ is in the partonic CMS frame

Some More Homework:

\#3) Let's work out the general $2 \rightarrow 2$ kinematics for general masses.

a) Start with the incoming particles.

Show that these can be written in the general form:

$$
\begin{array}{ll}
p_{1}=\left(E_{1}, 0,0,+p\right) & p_{1}^{2}=m_{1}^{2} \\
p_{2}=\left(E_{2}, 0,0,-p\right) & p_{2}^{2}=m_{2}^{2}
\end{array}
$$

... with the following definitions:

$$
\begin{gathered}
E_{1,2}=\frac{\hat{s} \pm m_{1}^{2} \mp m_{2}^{2}}{2 \sqrt{\hat{s}}} \quad p=\frac{\Delta\left(\hat{s}, m_{1}^{2,} m_{2}^{2}\right)}{2 \sqrt{\hat{s}}} \\
\Delta(a, b, c)=\sqrt{a^{2}+b^{2}+c^{2}-2(a b+b c+c a)}
\end{gathered}
$$

Note that $\Delta(a, b, c)$ is symmetric with respect to its arguments, and involves the only invariants of the initial state: $s, m_{1}{ }^{2}, m_{2}{ }^{2}$.
b) Next, compute the general form for the final state particles, p_{3} and p_{4}. Do this by first aligning p_{3} and p_{4} along the z-axis (as p_{1} and p_{2} are), and then rotate about the y-axis by angle θ.

What does the angular dependence tell us?

Observe, the angular dependence: $\quad q+\bar{q} \rightarrow e^{+}+e^{-}$

$$
\frac{d \widehat{\sigma}}{d \cos (\theta)}=Q_{i}^{2} \alpha^{2} \frac{\pi}{6} \frac{1}{\hat{s}}\left(1+\cos ^{2}(\theta)\right)
$$

Characteristic of scattering of spin $1 / 2$ constitutients by a spin 1 vector

Note, for the photon, the mirror image of the above is also valid; hence the symmetric distribution. The W has V-A couplings, so we'll find: $(1+\cos \theta)^{2}$

Next, we'll compute

 the hadronic CMS
Kinematics in the Hadronic Frame

$$
\begin{aligned}
& P_{1} \equiv P_{P_{2}=x_{2}}^{P_{1}^{\prime}} \\
& P_{1}=\frac{\sqrt{s}}{2}(1,0,0,+1) \quad P_{1}^{2}=0 \\
& P_{2}=\frac{\sqrt{s}}{2}(1,0,0,-1) \quad P_{2}^{2}=0 \\
& s=\left(P_{1}+P_{2}\right)^{2}=\frac{\hat{s}}{x_{1} x_{2}}=\frac{\hat{s}}{\tau} \\
& \text { Therefore } \\
& C_{\substack{\text { Fractional energy }{ }^{2} \text { between } \\
\text { partonic and hadronic system }}}^{\boldsymbol{\tau}=x_{1} x_{2}=\frac{\hat{s}}{s} \equiv \frac{Q^{2}}{s}} \\
& \frac{d \sigma}{d Q^{2}}=\sum_{q, \bar{q}} \int d x_{1} \int d x_{2}\left\{q\left(x_{1}\right) \bar{q}\left(x_{2}\right)+\bar{q}\left(x_{1}\right) q\left(x_{2}\right)\right\} \widehat{\sigma}_{0} \delta\left(Q^{2}-\hat{s}\right) \\
& \text { Hadronic } \\
& \text { cross } \\
& \text { section } \\
& \text { Parton } \\
& \text { distribution } \\
& \text { functions } \\
& \text { Partonic } \\
& \text { cross } \\
& \text { section }
\end{aligned}
$$

Scaling form of the Drell-Yan Cross Section

Using: $\quad \widehat{\sigma}_{0}=\frac{4 \pi \alpha^{2}}{9 \hat{s}} Q_{i}^{2} \quad$ and $\quad \delta\left(Q^{2}-\hat{s}\right)=\frac{1}{s x_{1}} \delta\left(x_{2}-\frac{\tau}{x_{1}}\right)$
we can write the cross section in the scaling form:

$$
Q^{4} \frac{d \sigma}{d Q^{2}}=\frac{4 \pi \alpha^{2}}{9} \sum_{q, \bar{q}} Q_{i}^{2} \int_{\tau}^{1} \frac{d x_{1}}{x_{1}} \tau\left\{q\left(x_{1}\right) \bar{q}\left(\tau / x_{1}\right)+\bar{q}\left(x_{1}\right) q\left(\tau / x_{1}\right)\right\}
$$

Notice the RHS is a function of only τ, not Q .

This quantity should lie on a universal scaling curve.

Cf., DIS case, \& scattering of point-like constituents

Longitudinal Momentum Distributions

Partonic CMS has longitudinal momentum w.r.t. the hadron frame

$$
p_{1}=x_{1} P_{1}+\begin{aligned}
p_{12}=\left(p_{1}+p_{2}\right)=\left(E_{12}, 0,0, p_{L}\right) \\
E_{12}=\frac{\sqrt{s}}{2}\left(x_{1}+x_{2}\right)
\end{aligned}
$$

x_{F} is a measure of the longitudinal momentum
The rapidity is defined as:

$$
\begin{array}{rlr}
x_{1,2}=\sqrt{\tau} e^{ \pm y} & \\
d x_{1} d x_{2}=d \tau d y & d Q^{2} d x_{F}=d y d \tau s \sqrt{x_{F}^{2}+4 \tau} \\
\frac{d \sigma}{d Q^{2} d x_{F}}= & \frac{4 \pi \alpha^{2}}{9 Q^{4}} \frac{1}{\sqrt{x_{F}^{2}+4 \tau}} \tau \sum_{q, \bar{q}} Q_{i}^{2}\left\{q\left(x_{1}\right) \bar{q}\left(\tau / x_{1}\right)+\bar{q}\left(x_{1}\right) q\left(\tau / x_{1}\right)\right\}
\end{array}
$$

So, we're ready to

 compare with data(or so we think...)

Let's compare data and theory

Table 1.2: Experimental K-factors.
\(\left.\begin{array}{|cc|c|c|c|}\hline Experiment \& Interaction \& Beam Momentum \& K=\sigma_{meas.} / \sigma_{DY}

\hline \hline E288 \& [Kap 78] \& p P t \& 300 / 400 \mathrm{GeV} \& \sim 1.7

\hline WA39 \& [Cor 80] \& \pi^{ \pm} W \& 39.5 \mathrm{GeV} \& \sim 2.5

\hline E439 \& [Smi 81] \& p W \& 400 \mathrm{GeV} \& 1.6 \pm 0.3

\hline \& \& \begin{array}{c}(\bar{p}-p) P t

NA3\end{array} \& [Bad 83] \& \pi^{ \pm} P t\end{array}\right]\)| 150 GeV |
| :---: |
| |

Oooops,

we need the

QCD corrections

$$
K=1+\frac{2 \pi \alpha_{s}}{3}(\ldots)+\ldots=?=e^{2 \pi \alpha_{s} / 3}
$$

Excellent agreement between data and theory

Drell-Yan can give us unique and detailed information about PDF's.

We'll now examine two examples:

1) Ratio of $\mathrm{pp} / \mathrm{pd}$ cross section
2) W Rapidity Asymmetry

A measurement of $\bar{d}(x) / \bar{u}(x)$ Antiquark asymmetry in the Nucleon Sea FNAL E866/NuSea

Cross section ratio of pp vs. pd

Obtain the neutron PDF via isospin symmetry: $\quad \begin{aligned} & u \Leftrightarrow d \\ & \bar{u} \Leftrightarrow \bar{d}\end{aligned}$

In the limit $\mathrm{x}_{1} \gg \mathrm{x}_{2}$:

$$
\begin{aligned}
& \sigma^{p p} \propto \frac{4}{9} u\left(x_{1}\right) \bar{u}\left(x_{2}\right)+\frac{1}{9} d\left(x_{1}\right) \bar{d}\left(x_{2}\right) \\
& \sigma^{p n} \propto \frac{4}{9} u\left(x_{1}\right) \bar{d}\left(x_{2}\right)+\frac{1}{9} d\left(x_{1}\right) \bar{u}\left(x_{2}\right)
\end{aligned}
$$

For the ratio we have:

$$
\frac{\sigma^{p d}}{2 \sigma^{p p}} \approx \frac{1}{2} \frac{\left(1+\frac{1}{4} \frac{d_{1}}{u_{1}}\right)}{\left(1+\frac{1}{4} \frac{d_{1}}{u_{1}} \frac{\bar{d}_{2}}{\bar{u}_{2}}\right)}\left(1+\frac{\bar{d}_{2}}{\bar{u}_{2}}\right) \approx \frac{1}{2}\left(1+\frac{\bar{d}_{2}}{\bar{u}_{2}}\right)
$$

As promised, this provides information about the sea-quark distributions

$$
\frac{\sigma^{p d}}{2 \sigma^{p p}} \approx \frac{1}{2}\left(1+\frac{\bar{d}_{2}}{\bar{u}_{2}}\right)
$$

Does the theory match the data???

Implies $\mathrm{R}<1$ for large x :

$$
\bar{d} \ll \bar{u}
$$

E.A. Hawker, et al. [FNAL E866/NuSea Collaboration], Measurement of the light antiquark flavor asymmetry in the nucleon sea, PRL 80, 3715 (1998)

E866 required significant changes in the hi-x sea distributions

With increased flexibility in the parameterization of the sea-quark distributions, good fits are obtained
E.A. Hawker, et al. [FNAL E866/NuSea Collaboration], Measurement of the light antiquark flavor asymmetry in the nucleon sea, PRL 80, 3715 (1998)
H. L. Lai, et al.\} [CTEQ Collaboration], Global $\{\mathrm{QCD}\}$ analysis of parton structure of the nucleon: CTEQ5 parton distributions, EPJ C12, 375 (2000)

Next ...

2) W Rapidity Asymmetry

Where do the W's and Z's come from ???

$$
\frac{d \sigma}{d y}\left(W^{ \pm}\right)=\frac{2 \pi}{3} \frac{G_{F}}{\sqrt{2}} \sum_{q \bar{q}}\left|V_{q \bar{q}}\right|^{2}\left[q\left(x_{a}\right) \bar{q}\left(x_{b}\right)+q\left(x_{b}\right) \bar{q}\left(x_{a}\right)\right]
$$

proton

$$
W^{+} \text {anti-proton }
$$

For anti-proton:

$$
u(x) \Leftrightarrow \bar{u}(x) \quad d(x) \Leftrightarrow \bar{d}(x)
$$

Therefore

$$
\begin{aligned}
\frac{d \sigma}{d y}\left(W^{+}\right) & \approx \frac{2 \pi}{3} \frac{G_{F}}{\sqrt{2}}\left[u\left(x_{a}\right) d\left(x_{b}\right)\right] \\
\frac{d \sigma}{d y}\left(W^{-}\right) & \approx \frac{2 \pi}{3} \frac{G_{F}}{\sqrt{2}}\left[d\left(x_{a}\right) u\left(x_{b}\right)\right]
\end{aligned}
$$

A. D. Martin, R. G. Roberts, W. J. Stirling and R. S. Thorne, Eur. Phys. J. C23, 73 (2002); Eur. Phys. J. C4, 463 (1998)

A bit of calculation

With the previous approximation,
$A \approx \frac{u\left(x_{a}\right) d\left(x_{b}\right)-d\left(x_{a}\right) u\left(x_{b}\right)}{u\left(x_{a}\right) d\left(x_{b}\right)+d\left(x_{a}\right) u\left(x_{b}\right)}=\frac{R_{d u}\left(x_{b}\right)-R_{d u}\left(x_{a}\right)}{R_{d u}\left(x_{b}\right)+R_{d u}\left(x_{a}\right)}$
where $\quad R_{d u}(x)=\frac{d(x)}{u(x)}$
We can make Taylor expansions:

$$
x_{1,2}=x_{0} e^{ \pm y} \simeq x_{0}(1 \pm y)
$$

$$
R_{d u}\left(x_{1,2}\right) \approx R_{d u}\left(x_{0}\right) \pm y x_{0} R_{d u}^{\prime}(\sqrt{\tau})
$$

Thus, the asymmetry is:

$$
A(y)=-y x_{0} \frac{R_{d u}^{\prime}\left(x_{0}\right)}{R_{d u}\left(x_{0}\right)}
$$

Charged Lepton Asymmetry

d/u Ratio at High-x

The form of the d / u ratio at large x as a function of

1) Parameterization
2) Nuclear Corrections

S. Kuhlmann, et al., Large-x parton distributions, PL B476, 291 (2000)

End of Part I: Where have we been???

History:

Discovery of J/ ψ, Upsilon, W/Z, and "New Physics" ???
Calculation of $q q \rightarrow \mu^{+} \mu^{-}$in the Parton Model
Scaling form of the cross section
Rapidity, longitudinal momentum, and x_{F}
Comparison with data:
NLO QCD corrections essential (the K-factor)
$\sigma(\mathrm{pd}) / \sigma(\mathrm{pp})$ important for d-bar/ubar
W Rapidity Asymmetry important for slope of d / u at large x
Where are we going?
P_{T} Distribution
W-mass measurement
Resummation of soft gluons

