

Ingredients of Factorization

A formal proof was constructed by numerous groups.

THOUGH EXPERIMENT To keep things simple, let's consider scattering off a parton target.

Basic Factorization Formula

$$
\sigma=f \otimes \omega \otimes d+O\left(\Lambda^{2} / Q^{2}\right)
$$

At Zeroth Order:

$$
\sigma^{0}=f^{0} \otimes \omega^{0} \otimes d^{0}+O\left(\Lambda^{2} / Q^{2}\right)
$$

Use: $\mathrm{f}^{0}=\delta$ and $\mathrm{d}^{0}=\delta$ for a parton target.

μ

Therefore:

$$
\sigma^{0}=f^{0} \otimes \omega^{0} \otimes d^{0}=\delta \otimes \omega^{0} \otimes \delta=\omega^{0}
$$

$$
\sigma^{0}=\omega^{0}
$$

Warning: This trivial result leads to many misconceptions at higher orders

Basic Factorization Formula

$$
\sigma=f \otimes \omega \otimes d+O\left(\Lambda^{2} / Q^{2}\right)
$$

At First Order:

$$
\begin{gathered}
\sigma^{1}=f^{1} \otimes \omega^{0} \otimes d^{0}+f^{0} \otimes \omega^{1} \otimes d^{0}+f^{0} \otimes \omega^{0} \otimes d^{1} \\
\sigma^{1}=f^{1} \otimes \sigma^{0}+\omega^{1}+\sigma^{0} \otimes d^{1}
\end{gathered}
$$

We used: $\mathrm{f}^{0}=\delta$ and $\mathrm{d}^{0}=\delta$ for a parton target.
f^{0}
Therefore:

$$
\omega^{1}=\sigma^{1}-f^{1} \otimes \sigma^{0}-\sigma^{0} \otimes d^{1}
$$

σ^{1}

$f^{1} \otimes \sigma^{0}$

$\sigma^{0} \otimes \mathrm{~d}^{1}$

Combined Result:

$\omega^{0}+\omega^{1}=\sigma^{0}+\sigma^{1}-\{\underbrace{f^{1} \otimes \sigma^{0}+\sigma^{0} \otimes d^{1}}\}$

TOT
HE
HC

Heavy
Excitation

Heavy Excitation

TOT $=\mathrm{HE}+\mathrm{HC}-\mathrm{SUB}$

Splitting Kernel to $\alpha_{\mathrm{s}}{ }^{1}$ order

$$
\phi_{i \leftarrow j}(x, \epsilon)=\delta(1-x) \delta_{i j}+\frac{\alpha_{s}}{2 \pi}\left(-\frac{1}{\epsilon}\right)\left[\frac{\mu^{2}}{M^{2}}\right]^{\epsilon} P_{i \leftarrow j}^{(1)}(x)
$$

Splitting Kernel to $\alpha_{\mathrm{s}}{ }^{1}$ order

$$
\begin{gathered}
P_{q \leftarrow q}^{(1)}(x)=C_{F}\left[\frac{1+x^{2}}{1-x}\right]_{+} \\
P_{q \leftarrow g}^{(1)}(x)=T_{F}\left[(1-x)^{2}+x^{2}\right] \\
P_{g \leftarrow q}^{(1)}(x)=C_{F} \frac{(1-x)^{2}+1}{x} \\
C_{F \leftarrow g}^{(1)}(x)=2 C_{F}\left[\frac{x}{\left(1-x_{+}\right)}+\frac{1-x}{x}+x(1-x)\right]
\end{gathered}
$$

HOMEWORK PROBLEM: WILSON COEFFICIENTS

Use the Basic Factorization Formula

$$
\sigma=f \otimes \omega \otimes d+O\left(\Lambda^{2} / Q^{2}\right)
$$

At Second Order:

$$
\begin{gathered}
\sigma^{2}=f^{2} \otimes \omega^{0} \otimes d^{0}+\ldots \\
f^{1} \otimes \omega^{1} \otimes d^{0}+\ldots .
\end{gathered}
$$

Therefore:

$$
\omega^{2}=? ? ?
$$

- Compute ω^{2} at second order.
- Make a diagrammatic representation of each term.

HOMEWORK PROBLEM: CONVOLUTIONS

Part 1) Show these 3 definitions are equivalent; work out the limits of integration.

$$
\begin{gathered}
f \otimes g=\int f(x) g(y) \delta(z-x * y) d x d y \\
f \otimes g=\int f(x) g\left(\frac{z}{x}\right) \frac{d x}{x} \\
f \otimes g=\int f\left(\frac{z}{y}\right) g(y) \frac{d y}{y}
\end{gathered}
$$

Part 2) Show convolutions are the "natural" way to multiply probabilities.
If f represents the heads/tails probability distribution for a single coin flip, show that the distribution of 2 coins is $\mathrm{f} \oplus \mathrm{f}$ and 3 coins is $\mathrm{f} \oplus \mathrm{f} \oplus \mathrm{f}$.

$$
\begin{gathered}
f \oplus g=\int f(x) g(y) \delta(z-(x+y)) d x d y \\
f(x)=\frac{1}{2}(\delta(1-x)+\delta(1+x))
\end{gathered}
$$

BONUS: How many processes can you think of that don't factorize?

KLN Theorem: cancellations of soft singularities

Mass-Independent Evolution.

Why is it valid?

DGLAP Equation and the Heavy Quark PDF

$\mathrm{HE}=\int f(P \rightarrow a) \otimes \sigma(a \rightarrow c)$

DGLAP equation Resums iterative splittings inside the proton

DGLAP Equation $\frac{d f_{i}}{d \log \mu^{2}}=\frac{\alpha_{s}}{2 \pi}{ }^{1} P_{j \rightarrow i} \otimes f_{j}+\ldots$

Splitting Function

$$
{ }^{1} P_{g \rightarrow q}=\frac{1}{2}\left[x^{2}+(1-x)^{2}\right]+\left(\frac{M_{H}^{2}}{\mu^{2}}\right)[x(1-x)]
$$

Effect of Heavy Quark Mass in the Calculation

$$
\begin{aligned}
\mathrm{HE} & =\underbrace{\int f(P \rightarrow a)} \otimes \sigma(a \rightarrow c) \quad \mathrm{SUB}=\int f(P \rightarrow g) \otimes{ }^{1} P(g \rightarrow a) \otimes \sigma(a \rightarrow c) \\
& \approx f(P \rightarrow g) \otimes^{1} P(g \rightarrow a) \quad{ }^{1} P \text { splittings must match }
\end{aligned}
$$

valid near threshold $\left(\mathrm{M}_{\mathrm{H}} \sim \mathrm{Q}\right)$

In Summary:

Near threshold $\left(\mathrm{M}_{\mathrm{H}} \sim \mathrm{Q}\right)$, mass effects cancel between HE and SUB
Above threshold $\left(\mathrm{M}_{\mathrm{H}} \ll \mathrm{Q}\right)$, mass effects can be ignored

Effect of Heavy Quark Mass in the Calculation is Trivial

$\mathrm{HE}=\int f(P \rightarrow a) \otimes \sigma(a \rightarrow c)$

$$
\mathrm{SUB}=\int f(P \rightarrow g) \otimes^{1} P(g \rightarrow a) \otimes \sigma(a \rightarrow c)
$$

