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1 Introduction

The answer to the question "What is a hadron?" will depend on the scale at which the
hadron is observed. At the atomic scale the hadrons behave pointlike. At the strong
interaction scale of the order of � ' 1 GeV the hadrons are composed from quarks and
gluons (the so-called partons [1]), themselves elementary particles (at this scale). They
obey the laws of Quantum Chromodynamics (QCD) which is a non-abelien SU(3) gauge
theory [2].

Usually hadrons are probed in high energy scattering experiments. The cross sections
for such experiments depend on the scattering scale Q, a typical particle mass m and the
renormalization scale �. The strong coupling constant is scale dependent. An important
property of QCD is its asymptotic freedom [3], which states that the coupling between
quarks and gluons vanishes for asymptotic small distances. For � ! 1 the coupling
behaves as

g(�) � 1

ln
�
�
�

� : (1)

This allows a perturbative calculation of the scattering cross section in the limit of large
scattering scales Q if we set � = Q. However, it turns out that in an n-loop calculation
the coupling will appear in the combination g2n(Q) lnkn(Q=m) for k = 1 or 2 [4] which
is no longer small for large Q, since m � Q eventually. The presence of the large
logarithm ln(Q=m) spoils the convergence of the perturbative expansion and indicates
that contributions from long distances are important in the cross section. Asymptotic
freedom is a property of the coupling at short distances only. Still, it is possible to apply
perturbative QCD to the calculation of high energy scattering cross sections through
the application of an appropriate factorization theorem, which separates short and long
distance behaviours.

For our purposes we can regard factorization as an established theorem of QCD,
although there are some unresolved questions, see [4, 5] for a review. A neat intuitive
approach to factorization for the case of deeply inelastic lepton-hadron scattering (DIS),
for which a schematic model is shown in Fig. 1, is given in [6]. In the center of mass (c.m.)
system both, the electron and the hadron, move with very high energies in opposite
directions, shown in Fig. 1a. The hadron of momentum p is Lorentz contracted and
consists of a number of partons in a virtual state with momentum fractions �ip with �i 2
[0; 1]. The lifetime of the virtual state in the rest frame of the hadron will be time dilated
in the c.m. system, therefore the time it takes the electron to cross the hadron is very
small (and vanishes in the limit of very high energies). During the collision the electron
thus sees a frozen distribution of partons in the hadron, see Fig. 1b. The partons have no
time to interact with each other and thus can be described by a probability distribution
of �nding a parton of momentum fraction �i in the hadron. The electron exchanges a
large transverse four-momentum q := k� k0 if it comes as close as O(1=Q) (Q2 � �q2) to
one of the partons; this follows from the uncertainty principle. The interaction between
the electron and the parton is called the hard scattering and is a perturbatively calculable
short distance cross section, if Q is su�ciently large. The formation of the hadron takes
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Fig. 1 Schematic picture for deep-inelastic scat-
tering based on the parton model.

place a long time before the collision and the hadronization of the fragments, shown in
Fig. 1c, takes place a long time after the collision. These long distance behaviours of the
cross section therefore decouple from the short distance behaviour. The probability for
the electron to �nd an additional parton within the hadron is suppressed by a geometrical
factor O(1=Q2).

Mathematically, the factorization of hard and soft processes in the hadronic cross sec-
tion d�H(S), where S is the c.m. energy, is written as a convolution of the hard scattering
cross section d�(�iS) with the parton density function (PDF) fiA(�i) that describes the
probability of �nding a parton i with momentum fraction �i inside the hadron A. The
total cross section is given by summing over all partons i:

d�H =
X
i

1Z
0

d�id�(�iS)fiA(�i) : (2)

To lowest order (LO) the hard scattering cross section is of order O(�), where � is
the electromagnetic coupling constant. The LO cross section is calculated by means of
Quantum Electrodynamics (QED) [7]. The parton and the electron exchange a virtual
photon of mass �Q2. The calculation is straightforward. Since the partons obey the
rules of QCD we can calculate corrections of order O(��s) to the LO process, where �s is
the strong coupling constant. The calculation of these next-to-leading order corrections
(NLO) is not as straightforward any more, since various divergences occur.

A detailed calculation of a NLO cross section can be done relatively easy for the Drell-
Yan reaction. In this reaction two hadrons collide and produce a pair of leptons. It was
�rst calculated by S. Drell and T. Yan [8] in 1970 (see also [9, 10]). J. Smith has given a
lecture on this subject at the CTEQ-DESY summer school 1995, that serves as a basis for
the sections 2, 4 and 5 [14]. Some literature already exists on the subject of calculating
cross sections in QCD, see e.g. [11, 12] and references therein. For an introduction to the
basics of perturbative QCD see [13].

The paper is organized as follows. In section 2 we start by de�ning the kinematic
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variables of the Drell-Yan process and calculate the Born cross section. In section 3 we
explain the renormalization of parton densities, starting from a discussion of the origins
of the soft singularities in the hard cross section. We proceed by calculating the NLO real
corrections to the Born process and explain how to extract the singular terms that appear
in these corrections in section 4. We will not be concerned with the calculation of the
virtual corrections since it is our main purpose in this paper to discuss the renormalization
of PDF's. The �nal result is presented in section 5. The appendix summarizes a number
of useful formulae and techniques, used throughout this paper.

2 The Born Cross Section

The Drell-Yan process for the case of muon production is

A(P1) +B(P2)! �+(k1) + ��(k2) +X ; (3)

where the incoming hadrons A and B have momenta P1 and P2, respectively, the outgoing
muons have momenta k1 and k2, and X denotes any additional �nal-state particles. The
four-momentum of the virtual photon that couples to the lepton pair is q := k1 + k2,
with mass Q2 := q2. The factorization of long and short distance behaviours holds for
hadron-hadron collisions in the same way as explained in section 1 for DIS. The partons
are assumed to be spread randomly inside the hadrons, each parton carrying a momentum
fraction x1; x2 2 [0; 1] so that their momenta are p1 = x1P1 and p2 = x2P2, respectively.
The masses of the partons and the hadrons are neglected, since they are much smaller
than Q2. The hadronic cross section is written as a convolution of the hard (partonic)
scattering cross section with the parton densities of the hadrons A and B

d�H(S) =
X
i;j

Z
dx1dx2fiA(x1)d�ij(s)fjB(x2) ; (4)

where S is the hadronic and s = x1x2S the partonic c.m. energy respectively. The parton
densities fiA(x) and fiB(x) are not calculable within perturbative QCD and must be de-
termined by experiment. They are universal in the sense that fiA(x) is �xed by the parton
i and the hadron A, regardless of the process under consideration. The factorization may
be pictured as in Fig. 2. The small blobs represent the PDF's of the initial hadrons and
the large blob in the center stands for the hard scattering.

x2

x1
µ-
µ+

remnant A

remnant B

Fig. 2 Factorization of hard and soft pro-
cesses in the Drell-Yan reaction.
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In this section we calculate the cross section on the Born level of order O(�). The
partonic cross section for the Born process d� is given by the squared matrix element,
summed over all incoming and outgoing spins, polarizations and colours, multiplied by the
phase space of the �nal-state particles (which are the two outgoing muons) and divided
by the 
ux factor [11, 12]:

d�b =
1

36

1

�2s jMbj2dPS(2) : (5)

Here 1=(2s) is the 
ux factor and the factor 1=36 comes from averaging over the unobserved
degrees of freedom of the initial state.

In section 4 the method of dimensional regularization [15, 16] is used, which regularizes
the divergencies in n = 4 � 2� dimensions. To obtain consistent results, all calculations
have to be performed in n dimensions. This also applies to the calculation of the �nite
Born cross section. The leptonic phase space in n dimensions is given by (see e.g. equation
(85) in the appendix)

dPS(2) =
1

(2�)n�2
dn�1k1
2!1

dn�1k2
2!2

�n(p1 + p2 � k1 � k2) ; (6)

where !1 and !2 are the energies of the 4-momenta k1 and k2, respectively. It is useful
to express the momenta k1 and k2 in terms of the variables y = (1 + cos �)=2, where � is
the angle between the outgoing leptons in the c.m. frame, and the c.m. energy given by
s = (p1 + p2)2 = (k1 + k2)2 = Q2. Integrating the phase space in n = 4 � 2� dimensions
yields the result Z

dPS(2) =
1

8�

 
4�

Q2

!�
�(1� �)

�(2 � 2�)
: (7)

The integration over the c.m. angular variable y has already been carried out, as the
Born matrix element does not depend on the angle. The details of the integration can
be found in the appendix B, especially equations (94) and (95). To be able to write the
cross section di�erential in Q2 the term

1 =
Z
dQ2�(s�Q2) =

1

s

Z
dQ2�(1�Q2=s) (8)

is inserted into the phase space, so that

dPS(2)

dQ2
=

1

8�s

 
4�

Q2

!�
�(1 � �)

�(2 � 2�)
�(1�Q2=s) : (9)

The matrix element jMbj2 is now calculated using the techniques explained in the
appendix A. The calculation of the cut diagram drawn in Fig. 3 gives a product of two
traces and two propagators:

jMbj2 = Q2
fe

4Tr[k=1
�k=2
�]
1

(q2)2
Tr[p=1


�p=2

� ] : (10)
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Fig. 3 The cut diagram representing the Born matrix element.

The quark charge is eQf , where e is the electric charge. The matrix element separates
into a lepton trace and a quark trace, which we denote by L�� and H�� , respectively. The
phase space integral of the outgoing particles and the photon propagators are included
into the lepton tensor, since these can always be separated from the hadronic part:

L�� :=
1

q4
Tr(k=1
�k=2
�)dPS

(2) : (11)

From current conservation q�L�� = 0 can be deduced so that the lepton tensor has the
form L�� = (q2g�� � q�q�)L(q2). The trace of L�� gives L�

� = 3q2L(q2). Combining
equations (7) and (11) the trace of the Lepton tensor is

L�
�(q) =

e2

(q2)2
Tr[k=1
�k=2


�]dPS(2) = �2�

q2

 
4�

Q2

!�
�(1 � �)

�(2 � 2�)
; (12)

so that for � ! 0 the result L(q2) = �(2=3)(�=q4) is obtained. Current conservation
also holds for the hadron tensor H�� so that q�H�� = 0 and L��H

�� = q2g��H
��L(q2).

Performing the quark trace for the hadron tensor gives

H�
� = g��H

�� = �48��

3q2
Q2

fs : (13)

The Born cross section in terms of the leptonic and the hadronic tensors is given by
d�b = (1=72s)L��H

�� , so that the �nal answer for the Born cross section in n = 4 space
time dimensions is given by

d�b

dQ2
=

4��2

9Q2s
Q2

f �(1�Q=s) ; (14)

where the delta function comes from the phase space. The integration over Q2 gives
the total Born cross section �B(s) := 4��2=(9Q2s)Q2

f , so we can rewrite (14) simply as
d�b=dQ2 = �B�(1�Q2=s).

3 Renormalization of PDF's

The Born cross section is �nite. However, in the calculation of the NLO matrix elements
singularities will occur in certain regions of the phase space. In Fig. 4 the Feynman
diagrams for the amplitudes of the Born subprocess and the O(�s) correction containing
a real gluon emission are drawn. We consider only the divergence occuring for a parton
with momentum p1 emitted from hadron A. The same argument holds for the parton
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k
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µ

µ

z Fig. 4 Hard cross section: Born graph and
real gluon emission.

emitted from hadron B. Taking k to be the momentumof the outgoing gluon the Feynman
diagram contains a propagator of the form

G � 1

(p1 � k)2
: (15)

The propagator diverges if the particle momentum is on-mass-shell, since the limit of
massless quarks is considered. The denominator

(p1 � k)2 = �2p1k = �2jp1jjkj(1� cos �) ; (16)

where � is the angle between the gluon and the parton, vanishes if cos � = 1 (which is
called a collinear divergence) and if jkj = 0 (called a soft divergence, since the energy of
the gluon vanishes). However, it can be proven that in the hard cross section the short
distance (�nite) parts and the long distance (singular) parts factorize in a similar way as
in the hadronic cross section [4, 5, 6]. We de�ne the bare partonic cross section d�, which
is calculable in perturbative QCD, a renormalized (�nite) partonic cross section d�� and
transition functions �ij so that

d�ij(s) =
Z
dz1dz2�ik(z1)d��kl(z1z2s)�jl(z2) : (17)

The variables z1; z2 2 [0; 1] give the momentum fraction of p1; p2 in the quark propagator
after a gluon is emitted as can be seen in Fig. 4. The singular terms are absorbed into
the transition functions in such a way, that the renormalized cross section remains �nite.
This factorization is pictured in Fig. 5. The residues of the transition functions � may

Fig. 5 The factorization theorem for the sin-
gular part of the partonic cross section.

be interpreted as the probability densities of �nding a quark inside a quark. For the
calculation of the hadronic cross section, renormalized, i.e. �nite, PDF's �f are needed,
which we de�ne as

�f (�) :=

1Z
0

1Z
0

dxdzf(x)�(z)�(� � xz) =

1Z
�

dz

z
f
�
�

z

�
�(z) = f(�)
 �(�) ; (18)
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where the symbol 
 is introduced to write the convolution in a compact form. Now the
infrared safe hadronic cross section, containing purely �nite terms, reads

d�HAB(s) =
Z
d�1d�2 �fkA(�1)d��kl(�1�2s) �flB(�2) ; (19)

where the variables �1; �2 2 [0; 1] are de�ned as �1 = x1z1 and �2 = x2z2. The connection
between the renormalized and unrenormalized hadronic cross sections can easily be seen
by inserting the de�nition of the renormalized PDF's (18) into (19) and performing the
integrations over �1 and �2 using the delta function in the de�nition (18):

d�HAB(s) =
Z
dx1dx2dz1dz2fiA(x1)�ik(z1)d��kl(z1z2s)�jl(z2)fjB(x2) : (20)

Making use of equation (17), equation (4) from section 2 is obtained,

d�HAB(s) =
X
i;j

Z
dx1dx2fiA(x1)d�ij(s)fjB(x2) ; (21)

which now contains only unrenormalized quantities. In the case of the Born cross section,
this is not dangerous, because the hard cross section does not contain singularities. But
in NLO it will be necessary to make use of the renormalization prescription de�ned here.

How is the renormalized partonic cross section extracted from the unrenormalized,
calculable one? The quantities d��; d� and � are assumed to have perturbative expansions
in �s:

d��(s) =
1X
n=0

�
�s

2�

�n
d��(n)(s) (22)

d�(s) =
1X
n=0

�
�s

2�

�n
d�(n)(s) (23)

�ik(z) = �ik�(1� z) +
1X
n=1

�
�s

2�

�n
�(n)ik (z) (24)

The �rst term in the expansion of the transition function is a delta function, because no
gluon is radiated from the quark in LO, so the probability of �nding a quark inside a
quark must be one. Inserting the expansions (22){(24) into (17) gives up to O(�s)

d�
(0)
ij (s) +

�s

2�
d�

(1)
ij (s) = d��(0)ij (s) +

�s

2�

�
d��(1)ij (s) +

Z
dz1 �

(1)
ik (z1)d��

(0)
kj (z1s)

+
Z
dz2 d��

(0)
ik (z2s)�

(1)
kj (z2)

�
: (25)

Comparing the left hand and the right hand side in LO gives d��(0) = d�(0), i.e. the renor-
malized and unrenormalized Born cross section are the same. The NLO correction can
be obtained by comparing the left hand and right hand side to order �s and rearranging
the terms:

d��(1)ij = d�
(1)
ij �

Z
dz1�

(1)
ik d�

(0)
kj �

Z
dz2�

(1)
ik d�

(0)
kj : (26)
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Thus the prescription for subtracting the singular parts from the bare cross section is
simple: the singularity from d�(1) is removed by the convolution of the �nite Born cross
section with the O(�s) transition functions (which of course are singular).

What follows in the next section is an explicit calculation of the bare cross section
in O(�s). To handle the singularities a regularization procedure is needed. A number of
di�erent methods are in use. As already mentioned in section 2, we choose the dimensional
regularization method. The aim of this regularization is to isolate the singularities in pole
terms like 1=� or 1=�2. After the poles have been removed, the limit � ! 0 is taken and
the four dimensional result is obtained.

4 The O(�s) Corrections

The O(�s) corrections to the Born process include real and virtual corrections. The real
corrections arise from the additional radiation of a gluon from one of the partons in the
initial state (the subproces q�q ! g���) or the interaction of a gluon from one of the
hadrons with a quark of the other hadron (the subprocess qg! q���), whereas the virtual
corrections contain self-energy diagrams and vertex corrections. At the end of this section
the structure of the result for the virtual corrections is brie
y discussed.

We now calculate the cross section for the emission of a real gluon from one of the
incoming quarks q�q ! g���. The same notation as in section 2 is chosen, in addition the
momentum of the outgoing gluon is denoted by k3. The partonic cross section is similar to
equation (5), only that one additional outgoing parton has to be included into the phase
space, so that it contains three �nal-state particles:

d�r =
1

72s
jMrj2dPS(3) : (27)

To apply the splitting of the matrix element into a leptonic and a hadronic part, as
in section 2 the three particle phase space has to be split into the two particle phase
space of the muons and a two particle phase space including the intermediate photon
and the outgoing gluon. The decomposition of the phase space is illustrated in Fig. 6.
Mathematically speaking, the splitting is achieved by inserting [15]

1 =
Z
dQ2

2�

Z
dn�1q

(2�)n�12Eq
�(n)(q � k1 � k2)(2�)

n (28)

for the intermediate photon q = k1 + k2 into the three particle phase space

dPS(3) =
dn�1k1

2E1(2�)n�1
dn�1k2

2E2(2�)n�1
(2�)n

dn�1k3
2E3(2�)n�1

�n(p1 + p2 � k1 � k2 � k3) ; (29)

p1

p2

k3

k2

k1

p1

p2

k3

k2

k1

q Fig. 6 Splitting of the three par-
ticle phase space.
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which yields

dPS(3) =
dQ2

2�
dPS

(2)
H dPS

(2)
L

=
dQ2

2�

(
dn�1k3

2E3(2�)n�1
dn�1q

2Eq(2�)n�1
�n(p1 + p2 � k3 � q)(2�)n

)

�
(

dn�1k1
2E1(2�)n�1

dn�1k2
2E2(2�)n�1

(2�)n�n(q � k1 � k2)

)
: (30)

The leptonic phase space dPS(2)L is the same as in the previous section, namely equation
(7). The details of calculating the hadronic phase space are given in appendix B and from
equation (94) it follows that

dPS
(2)
H =

1

8�

(4�)�

�(1� �)

(s�Q2)1�2�

s1��

Z 1

0
dy[y(1� y)]�� : (31)

The integration over y, which parametrizes the angle between the gluon and the photon,
has to be done later, since the matrix elements will depend on y. With the achieved
separation of the phase spaces, the partonic cross section (27) can be rewritten as

d�r =
1

72s
L��H

��dPS(2)H ; (32)

where the lepton tensor is the same as for the Born case, including the photon propagators
and the leptonic phase space.

We proceed by calculating the trace of the hadron tensor. The cut diagrams necessary
for calculating the matrix elements are given in Fig. 7. Using the techniques explained
in appendix A we write down the traces which have to be calculated. Perfoming all
summations in diagram (c) we are left with

jM(c)
r j2 = �e23CF g

2�2�JcQ
2
f ; (33)

where

Jc =
1

tu
Tr [p=2


�(p=2 � k=)
�p=1
�(p=1 � k=)
�] : (34)

Calculating the trace with the help of an algebraic computer program [21, 22] the result

Jc = �8sQ
2

tu
(1� �) + 8�(1 � �) (35)

(a) (b) (c)

Fig. 7 The cut diagrams for real
gluon emision.
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is found. The diagram (c) occurs twice in the cross section. In the same manner the
diagram (a) is calculated, which gives

jM(a)
r j2 = �e23CF g

2�2�JaQ
2
f with Ja = 8

u

t
(1 � �)2 : (36)

The diagram (b) is obtained by crossing t $ u from Ja. Collecting the results, taking
diagram (c) twice,

�1

3
H�

� =
1

3

�
2 jM(c)

r j2 + jM(a)
r j2 + jM(a)

r (t$ u)j2
�

= �e2CF g
2�2�(1 � �)Q2

f

"
16sQ2

tu
+ 8(1 � �)

�
t

u
+
u

t

�
� 16�

#
(37)

is found. It is useful to express the Mandelstam variables in terms of Q2, y = (1+cos �)=2
and z := Q2=s by using the relations

s = (p1 + p2)
2 =

Q2

z
; (38)

t = (p1 � k3)
2 = �2p1k3 = �2

p
s

2
jk3j(1� cos �)

= �Q
2

z
(1� z)(1� y) ; (39)

u = (p2 � k3)
2 = �Q

2

z
(1 � z)y : (40)

Note that indeed s+ t+ u = Q2. Now the partonic cross section for real gluon emission
is found by multiplying the 
ux factor, the phase space integral and the matrix elements
and using the de�nition of �B:

�s

�

d�r

dQ2
= 4�B�sCF�

2�
Z
dPS(2)H

"
2sQ2

tu
+ (1 � �)

�
t

u
+
u

t

�
� 2�

#

= �B
�s

2�
CF

 
4��2

Q2

!�
z�(1 � z)1�2�

�(1 � �)

Z 1

0
dy[y(1� y)]�� �

� (1� z)

"
2z

(1 � z)2y(1� y)
+ (1 � �)

 
1� y

y
+

y

1 � y

!
� 2�

#
: (41)

In this equation the possible divergencies are explicit. For � ! 0, the terms in the
big bracket are divergent for y ! 0 and y ! 1, so that the integral over the phase
space variable y would be in�nite. However, the singular terms from the integrals can
be extracted if � is kept �nite. The y-integrals can be evaluated using the Beta function
introduced in the appendix A. Using the properties of the Gamma function [20] (not to
be confused with the transition functions) the following integrals are found:

Z 1

0
dy

[y(1� y)]��

y(1� y)
=

�2(��)
�(�2�) = �

2

�

�2(1 � �)

�(1 � 2�)
; (42)
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Z 1

0
dy[y(1� y)]�� =

1

1� 2�

�2(1� �)

�(1 � 2�)
; (43)

Z 1

0
dy[y(1� y)]��

y

(1 � y)
=

Z 1

0
dy[y(1� y)]��

(1� y)

y
= � (1� �)

�(1� 2�)

�2(1 � �)

�(1 � 2�)
:(44)

Inserting these integrals into (41) and the simple expression

�s

�

d�r

dQ2
= ��B�s

�
CFD(�)

2z�

�

�
2(1� z)�1�2�z + (1� z)1�2�

�
(45)

is obtained, where the de�nition

D(�) :=

 
4��2

Q2

!�
�(1 � �)

�(1 � 2�)
(46)

has been used. Expanding this function to order �, using a� = e� lna ' 1 + � ln a, yields

D(�) ' 1 + �(ln 4� � 
E + ln
�2

Q2
) (47)

with D(� ! 0) = 1. Now the poles can be extracted from equation (45). Only the �rst
term in the brackets is singular for z ! 1 in the case � ! 0. To get a �nite answer, use
of the plus distribution function as de�ned in the appendix C is made. First,

Z 1

0

dz

(1� z)1+2�
=

�(1)�(�2�)
�(1 � 2�)

= � 1

2�
: (48)

The convolution of (1 � z)�1�2� with a test function f(z) gives

Z 1

0

f(z) dz

(1 � z)1+2�
=
Z 1

0
dz
f(z)� f(1) + f(1)

(1 � z)1+2�
=
Z 1

0
dz
f(z) � f(1)

(1 � z)1+2�
� 1

2�
f(1) ; (49)

where use of the integral (48) has been made. Expanding (1 � z)�1�2� to order � gives

(1� z)�1�2� =
1

1 � z
e�2� ln(1�z) =

1

1� z
(1� 2� ln(1� z) + : : :) ; (50)

which, inserted into (49), yields

Z 1

0

f(z) dz

(1� z)1+2�
=

Z 1

0
dz
f(z) � f(1)

(1� z)
� 2�

Z 1

0
dz
�
f(z)� f(1)

�
ln(1 � z)

(1� z)

� 1

2�

Z 1

0
dzf(z)�(1� z) : (51)

The �rst and the second integral on the right hand side of this equation can be written
by using the de�nition of the plus distribution function. Abstracting from the integrals,
the equation reads

1

(1 � z)1+2�
= � 1

2�
�(1� z) +

�
1

1� z

�
+
� 2�

 
ln(1� z)

1 � z

!
+

+O(�2) : (52)
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The left hand side of (52) convoluted with a test function gives the same result as the
convolution of the right hand side with the same test function, as can be seen from (51).
We are now ready to write down the �nal regulated result for the partonic real gluon
emission cross section. Going back to (45) and expanding the second term inside the
brackets as well as z� to order � and using (52), we �nd

�s

�

d�r

dQ2
= �B

�s

�
CFD(�)

"
2

�2
�(1� z)� 2

�

(1 + z)2

(1� z)+

+ 4(1 + z2)

 
ln(1 � z)

1� z

!
+

� 2

 
1 + z2

1 � z

!
ln z

#
: (53)

The last term does not give a singularity for z! 1 since limz!1 ln(z)=(1� z) = const.
The question that arises, is how to get rid of the pole terms 1=� and 1=�2. The O(�s)

corrections to the Born cross section include not only the real corrections but also the
virtual corrections that are given by

d�v =
1

72s
jMvj2dPS(2) : (54)

The matrix elements for the virtual corrections are obtained by multiplying the Feynman
diagrams for the Born amplitude with the graphs containing vertex and quark self energy
corrections, see Fig. 8. Since these corrections contain internal lines the phase space of the
�nal state contains only two �nal-state particles and is the same as in the Born case. The

(a) (b) (c)

Fig. 8 Cut diagrams for the vir-
tual corrections.

momenta in the loops in the virtual corrections are not �xed and have to be integrated
out. These loop integrals are divergent for large loop momenta and give rise to ultra-violet
(UV) divergencies. They can be regulated in 1=� poles and removed by adding a counter
term to the QCD Lagrangian, where the singularities are absorbed by a rede�nition of
the quark charge, quark �eld and gluon �eld. There are also infrared (IR) divergencies
from the loop integrals. If all contributions of the virtual corrections are added together
there are some cancellations among the IR contributions, and the result is [9]

�s

�

d�v

dQ2
= �B

�s

�
CFD(�)�(1 � z)

"
� 2

�2
� 3

�
+
2�2

3
+O(�)

#
: (55)

Adding the real and the virtual corrections d�r and d�v cancels the 1=�2 pole. The
virtual corrections are multiplied by a delta function which re
ects the fact that the �nal
state contains only two particles. This means that poles from the virtual corrections can

14



only cancel contributions from the real corrections that are multiplied by a similar delta
function. For the remaining poles the renormalization prescription of the PDF's discussed
in section 3 has to be applied.

5 The Finite Result

Adding the real and virtual corrections d�r and d�v from equations (53) and (55) the
unrenormalized, i.e. bare partonic cross section to order O(�s) is found to be

d�(1)

dQ2
=

d�r

dQ2
+

d�v

dQ2
= �BD(�)

�
�2

�
Pqq(z) +R(z)

�
; (56)

where we have de�ned the functions

Pqq(z) = CF

"
(1 + z)2

(1 � z)+
+
3

2
�(1� z)

#
(57)

and

R(z) = CF

"
�(1� z)

 
2�2

3
� 8

!
+ 4(1 + z2)

 
ln(1� z)

1 � z

!
+

� 2

 
1 + z2

1 � z

!
ln z

#
: (58)

The function Pqq(z) is one of the so-called Altarelli-Parisi splitting functions [17]. It
describes the probability of �nding a quark inside a quark if a gluon is radiated. Equation
(26) from section 3 describes how to �nd the renormalized cross section from the bare
cross section:

d��(1)(z)

dQ2
=

d�(1)(z)

dQ2
�
Z
dz1�

(1)(z1)
d�(0)(z1)

dQ2
�
Z
dz2�

(1)(z2)
d�(0)(z2)

dQ2
(59)

(z = Q2=s). The Born cross section is

d�(0)(ŝ)

dQ2
= �B(ŝ)�(1�Q2=ŝ) ; (60)

where now ŝ = z1s or ŝ = z2s. The integrations are performed using the delta functions
in (60), so that

d��(1)(z)

dQ2
=

d�(1)(z)

dQ2
� 2 �(1)(z)�B(s) : (61)

The transition function is de�ned as

�(1)(z) := �1

�
D(�)Pqq(z) ; (62)

in order to cancel the 1=� pole term multiplying Pqq in (56). With this de�nition, the
�nal �nite partonic cross section for the subprocess q�q! g��� from (61) is

d��(1)

dQ2
= �BR(z) (63)
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(where, as there are no singular terms left, the limit � ! 0 with D(0) = 1 is taken).
The �nal result for the total Drell-Yan reaction also contains a contribution from the
subprocess qg ! q��� that will not be considered here. The calculation is similar to that
of section 4 and the result can be found in [9, 10].

The de�nition (62) is not unique. Since � is not directly observable any kind of
renormalization scheme can be adopted, which means that �nite parts from R(z) can
be moved into �(z). The convention used here is called the Minimal Subtraction (MS)
renormalization scheme [18]. The renormalized PDF's are convoluted with the transition
functions, so they also depend on the renormalization scheme. If one uses the PDF's in
another calculation, these have to be done with the same scheme to yield consistent results.
In addition, the �nal result (63) will depend on the choice of the renormalization constant
�. The constant � should be large, so that the perturbative expansion makes sense, but is
otherwise arbitrary. In a calculation to all orders this dependence cancels, so one expects
the NLO result to be less dependent on � than the LO result. Normally �2 � Q2 is used,
since Q is the large scale in the process. One actually �nds a reduced dependence on the
renormalization scale in NLO. Finally, to make any theoretical prediction, actually two
experimental results are needed. One experiment (e.g. DIS) can be used to �x the PDF's.
These are then included in the calculation of the cross section of another process, e.g. the
Drell-Yan reaction.
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A Calculating Matrix Elements

In this section the matrix elements for real gluon emission are calculated by using the
technique of cut diagrams. In Fig. 9 the Feynman diagrams are shown that are necessary
for the calculation. In the main text we use the notation shown below as the last of the
equivalent symbols, where the incoming particles are not connected. All cut lines are

=

.

=

p1

p2

k1

k2

k

q
.

p1

p2

k1

k2

k1

k2

p1

p2

P

Fig. 9 The Feynman diagrams of the squared matrixelement for real gluon emission and
their representation by cut diagrams.

external particles (i.e. ingoing or outgoing) that are on mass shell. Lines that are not cut
are virtual particles which are represented by propagators. The Feynman rules used in
the calultion of the above cut diagram are collected in Fig. 10 [12]. In n = 4 � 2� space
time dimensions the coupling constant has dimensions [g] = �. Normally g is taken to be
dimensionless. To obtain this, the coupling constant g is replaced by g ! g�� with the
renormalization scale � with dimension [�] = 1. For �! 0 the usual dimensionless result
is restored.

Each closed loop corresponds to a Dirac trace over the loop-momenta. In addition the
gluon or photon vertices (�ie
�) of that loop have to be written down. The outer loop
over the quark lines in Fig. 9 gives the contribution

Tr

 
p=2(�ie
�)

�i(p=1 � k=)

(p1 � k)2
(�igs
�T a)p=1(+igs


�T a)
+i(p=1 � k=)

(p1 � k)2
(+ie
�)

!

=
e2g2s

(p1 � k)4
Tr (p=2


�(p=1 � k=)
�p=1

�(p=1 � k=)
�) tr(T aT a) :

µ ν

Quarkpropagator:
i(p=+m)
p2�m2

Gluonpropagator:
i
k2

(�g��)

Quark{Gluon vertex: �ig��(Ta
�)

Fig. 10 The QCD Feynman rules for calculating matrix elements in the Feynman gauge.
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Note that everything on the right hand side of the cut has to be taken complex conjugated
(vertices have opposite sign etc.). Since the gluon line is connecting the two quark{gluon
vertices, the same Gell-Mann matrices T a are taken. This additional trace over the
Gell-Mann matrices is distinct from the Dirac trace and given by tr(TaTa) = 1=2. For
the fermion loop with momenta k1 and k2 the same procedure is followed and the trace
e2Tr(k=1
�k=2
�) is found. The two photon propagators with momenta q = k1 + k2 give

�i
(k1 + k2)2

i

(k1 + k2)2
=

1

q4
; (64)

and the cut (external) gluonline gives ��(k)���(k). For summing over outgoing gluons the
rule

P
��(k)���(k) = g�� is used. Collecting the results, the squared matrixelement can be

written down:

jMj2 = 1

2

e4g2s
(p1 � k)4

1

(k1 + k2)4
Tr (p=2


�(p=1 � k=)
�p=1
�(p=1 � k=)
�)Tr (k=1
�k=2
�) : (65)

The square of the matrix element separates into two tensors, one for the trace over the
quarks and the other for the trace over the leptons, namely

H�� = Tr (p=2

�(p=1 � k=)
�p=1
�(p=1 � k=)
�) ; (66)

and
L�� = Tr (k=1
�k=2
�) : (67)

Thus the squared matrix element can be written as a multiplication of the two tensors:

jMj2 = 1

2

e4g2s
(p1 � k)4

1

(k1 + k2)4
H��L�� : (68)

From current conservation q�L�� = 0 is deduced so that the lepton tensor has the form
L�� = (q2g�� � q�q�)L(q2). Performing the lepton trace L(q2) = �(2=3)(�=q4) is found.
Current conservation also holds for the hadron tensor H�� so that q�H

�� = 0 and
L��H

�� = q2g��H
��L(q2). Therefore the trace of the hadron tensor has to be calcu-

lated. To calculate the traces appearing in (68) the following Dirac algebra is used, where
the indizes run from 0 to n = 4� 2� [12]:


�
� + 
�
� = 2g��

g��g�� = n


�a=

� = 
�a�


�
�

= 
�a�[�
�
� + 2g�� ] = a=(2� n) = �2(1� �)a=


�a=b=

� = 4ab� 2�a=b=


�a=b=c=

� = �2c=b=a=+ 2�a=b=c=

Tr[a=b=] = 4(ab)

Tr[a=b=c=d=] = 4[(ab)(cd)� (ac)(bd) + (ad)(bc)]
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It is tedious (and even impracticable for higher orders), to do the traces by hand. Fortu-
nately the trace formulas are implemented in computer programs, see e.g. [21, 22]. Using
the de�nition of the Mandelstam variables

s = (p1 + p2)
2 = 2p1p2 ;

t = (p1 � k)2 = �2p1k ;

u = (p2 � k)2 = �2p2k ;

�nally H�
� = 8(1 � �)2u=t is found.

B Phase Space Integration

Gamma Function

The Gamma function is de�ned as [20]

�(z) =

1Z
0

dte�ttz�1; (Rez > 0) : (69)

The function is shown in Fig. 11. It has poles at negative integers. Some basic properties
of � are

�(n+ 1) = n! (n = integer) ; (70)

�(z + 1) = z�(z) (Re(z) > 0) ; (71)

�(z)�
�
1

2

�
= 2z�1�

�
z

2

�
�
�
z + 1

2

�
: (72)

Equation (72) is called the doubling formula. Some values of the �{function and its
derivatives are

�(1) = �(2) = 1; �
�
1

2

�
=
p
� ; (73)

�0(1) = �
E; �00(1) = 
2E +
�2

6
; (74)

-6

-4

-2

0

2

4

6

-3 -2 -1 0 1 2 3 4

Fig. 11 Graph of the Gamma function.
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where 
E is the Euler-Mascheroni constant. The Taylor expansion of � gives, using (74),

�(1 + �) = 1 � 
E�+
�2

2
(
2E +

�2

6
) + : : : ; (75)

or, from (71),

�(�) =
1

�
� 
E +

�

2
(
2E +

�2

6
) + : : : : (76)

In n-dimensional integrals the Beta function

B(�; �) :=

1Z
0

dyy��1(1 � y)��1 =
�(�)�(�)

�(� + �)
(77)

frequently occurs. Substituting y = sin2 � the useful formula

�=2Z
0

d�(sin �)2��1(cos �)2��1 =
1

2
B(�; �) =

1

2

�(�)�(�)

�(� + �)
(78)

is obtained.

Polar Coordinates in n Dimensions

We use the notation l2 = l20�jlj2 = m2
l , with ml being the mass of a fourvector l�, jlj being

the length of the three-vector and l0 being the energy. To begin with we will consider
polar coordinates in n (n integer) dimensions, namely jlj; �; �1; : : : ; �n�2. We de�ne

d
n�1 := d�d�1 sin �1 : : : d�n�2 sin
n�2 �n�2 : (79)

The n-dimensional phase space in polar coordinates is then given by

dnl = djlj jljn�1d
n�1 : (80)

To perform the integration over dnl equation (78) is used with � = 1
2:

�Z
0

d� sinn � =
p
�
�(n+1

2
)

�(n+22 )
: (81)

Using this result the integral over the angles

Z
d
n�1 = 2�(

p
�)n�2

�(1)

�(32)

�(32)

�(2)
� : : : � �(

n�1
2 )

�(n2 )
= 2

�n=2

�(n2 )
(82)

is obtained. The intermediate Gamma functions cancel each other, except for the �rst
numerator and the last denominator. From this line and the de�ntion of d
n�1 equation
(79) Z

d
n�1 =
Z
d
n�2d�n�2 sin

n�2 �n�2 =
2�(n�1)=2

�(n�12 )

Z
d�n�2 sin

n�2 �n�2 (83)
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is found. Finally, the integration over the n-dimensional phase space gives

Z
dnl =

Z
dl jljn�1d
n�1 = 2�

Z
dljljn�1 �n=2

�(n=2)
: (84)

The above formulae hold for any complex n, in particular for n = 4� 2�.

Two Particle Phase Space

We calculate a two particle phase space for the case that one outgoing particle is massive.
Consider two particles with momenta p1 and p2 and masses p21 = 0 and p22 = m2, from
which jp1j = E1 and jp2j2 = E2

2 �m2 follows. The two particle phase space is given by
[12] Z

dPS(2) =
Z

dn�1p1
2E1(2�)n�1

dn�1p2
2E2(2�)n�1

(2�)n�n(P � p2 � p1) : (85)

The delta function guarantees the energy-momentum conservation. The phase space is
best calculated in the cm frame of the particles p1 and p2 with cm energy

p
s:

P� = p1� + p2� = (
p
s; 0; 0; 0) : (86)

To integrate over the delta function the identity

Z
dp2�(p

2
2 �m2) =

Z
dp2�(E

2
2 � (jp2j2 +m2))

=
Z
dp2

1

2
q
jp2j2 +m2

�
�
�
E2 +

q
jp2j2 +m2

�

+ �
�
E2 �

q
jp2j2 +m2

��
=

1

2E2
(87)

is used. Inserting this into (85), using p22 = (P � p1)2 = s� 2E1

p
s

Z
dPS(2) =

Z
dn�1p1

2E1(2�)n�1
dnp2

(2�)n�1
(2�)n�((P � p1)

2 �m2)�n(P � p2 � p1)

=
1

(2�)n�2

Z
dn�1p1
2E1

�(s� 2E1

p
s�m2) (88)

is obtained. Using polarcoordinates in n � 1 dimensions

dn�1p1 = jp1jn�2djp1jd
n�2 = En�2
1 dE1d
n�2 ; (89)

the formula

Z
dPS(2) =

1

(2�)n�2

Z
dE1

En�3
1

2
�(s� 2E1

p
s�m2)

Z
d
n�2 (90)
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is calculated. Using formula (83)Z
dPS(2) =

1

(2�)n�2
2�(n�2)=2

�(n�22 )

Z
dE1

En�3
1

2
�(s� 2

p
sE1 �m2)

Z �

0
d� sinn�3 � (91)

is obtained. With the use of

�(s� 2
p
sE1 �m2) =

1

2
p
s
�

 
E1 � s�m2

2
p
s

!
; (92)

the integration over the delta function can be performed, yieldingZ
dPS(2) =

�(n�2)=2

(2�)n�2�(n�22 )

1

2
p
s

 
s �m2

2
p
s

!n�3 Z �

0
d� sinn�3 � : (93)

Substituting y = (1 + cos �)=2Z
dPS(2) =

1

8�

(4�)�

�(1 � �)

(s�m2)1�2�

s1��

Z 1

0
dy[y(1� y)]�� (94)

is found. If the matrix elements are independant of y, the integral over y is performed
with the help of (77): Z 1

0
dy[y(1� y)]�� =

�2(1� �)

(1� 2�)�(1 � 2�)
: (95)

C The Plus Function

Consider a function F (x) that is singular at x = 1. The integral of F (x) over the interval
[0; 1] will diverge. To overcome this problem, the plus function is de�ned as

F+(x) := lim
�!0

0
B@F (x)�(1� � � x)� �(1� � � x)

1��Z
0

dyF (y)

1
CA : (96)

It is clear from the de�ntion, that F+(x) = F (x) for x < 1��. Strictly speaking, the plus
function is a distribution. It is well behaved only when it is convoluted with a smooth
test function G(x):

1Z
0

dxF+(x)G(x) =

1Z
0

dxF (x)[G(x)�G(1)] : (97)

The property
1Z

0

dxF (x)+ = 0 (98)

of F+(x) can be easily obtained from (97). If the lower integration boundary is not equal
to zero, the convolution with a test function yields

1Z
a

dxF+(x)G(x) =

1Z
a

dxF (x)[G(x)�G(1)] +G(1)

aZ
0

dxF (x) : (99)
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