Physics 6321

Homework 10

\#1) For a simple harmonic oscillator:
a) Compute the Lagrangian and the Lagrange equations.
b) Compute the Hamiltonian and the Hamilton equations.
\#2) For the Atwood machine (with a massless pulley)
a) Compute the Lagrangian and the Lagrange equations.
b) Compute the Hamiltonian and the Hamilton equations.
\#3) For a simple harmonic oscillator, using the below F1[q, Q] generating function, a) compute the relations between $[\mathrm{q}, \mathrm{p}]$ and $[\mathrm{Q}, \mathrm{P}]$,
b) compute the transformed Hamiltonian $\mathrm{H}[\mathrm{q}, \mathrm{p}] \rightarrow \mathrm{K}[\mathrm{Q}, \mathrm{P}]$,
c) compute and solve the equations of motion in $[\mathrm{Q}, \mathrm{P}]$ space,
d) transform back to find the solution in $[\mathrm{q}, \mathrm{p}]$ space.

$$
F_{1}=\frac{m \omega q^{2}}{2} \cot Q
$$

\#4) For a simple harmonic oscillator, using the below $\mathrm{F} 3[\mathrm{p}, \mathrm{Q}]$ generating function, [Note, I created this problem and I think I have the wm factors correct, but check me :]
a) compute the relations between $[\mathrm{q}, \mathrm{p}]$ and $[\mathrm{Q}, \mathrm{P}]$,
b) compute the transformed Hamiltonian $\mathrm{H}[\mathrm{q}, \mathrm{p}] \rightarrow \mathrm{K}[\mathrm{Q}, \mathrm{P}]$,
c) compute and solve the equations of motion in $[\mathrm{Q}, \mathrm{P}]$ space,
d) transform back to find the solution in $[\mathrm{q}, \mathrm{p}]$ space.

$$
F_{3}[p, Q]=\frac{-p^{2}}{2 \omega m} \operatorname{Tan} Q
$$

