$1,2,3$) Consider the 2-body Atwood machine given as an example in Chapter 1 (problem 2, page 27), We are going to solve this many different ways.

1) Solve this problem using Newton's $2^{\text {nd }}$ equation: $F=m a$ for $\{a, T\}$, the acceleration of the masses and the tension T.
2) Solve this again, but use the Lagrangian method (as illustrated in your book) with ONE independent variable by using $x 1+x 2=L$, therefore $\mathrm{x} 2=\mathrm{L}-\mathrm{x} 1$.
3) Solve this again, but use the Lagrangian method (as illustrated in your book) with TWO independent variables, $\{x 1, x 2\}$. This time you will use a constraint equation $\mathrm{x} 1+\mathrm{x} 2=\mathrm{L}$ and introduce a Lagrange multiplier λ. Solve for $\{\mathrm{a} 1, \mathrm{a} 2, \lambda\}$

4) An Atwood machine is built as follows: A string of length L1 passes over a fixed light pulley supporting a mass m 1 on one end and a pulley of mass m 2 (negligible moment of inertia) on the other. Over this second pulley passes a string of length L2 supporting a mass m 3 on one end and m 4 on the other where $\mathrm{m} 3 \neq \mathrm{m} 4$. Set up Lagrange's equations for this system using the method of Lagrange multipliers. Use as coordinates the (not independent) distances of the four masses from the fixed pulley ($x 1, x 2, x 3, x 4$). Solve for the two forces of constraint and show that the mass m1 remains in equilibrium if:

$$
m 1=m 2+m 3+m 4-\frac{(m 3-m 4)^{2}}{(m 3+m 4)}
$$

5) Given that the kinetic energy is $T=(1 / 2) \mathrm{mv}^{2}$ (where velocity $\mathrm{v}=\mathrm{x}^{\prime}$) and the potential energy is $U=e \phi-\frac{e}{C} \vec{A} \circ \vec{v}$ where ϕ is a scalar
 potential and A is a vector potential which depends on x . Compute the equations of motion.
