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dropped down a 100-meter-deep mine shaft at the equator, and let us find the total
deflection by the time it hits the bottom. The time to reach the bottom is determined
by the last of equations (9.55) as t = 4/2h/g, and (9.57) gives for the total easterly
deflection (putting § = 90° and g ~ 10 m/s%)

3/2
e tan(2)
3 g

~ % x (7.3 x 1072571 x (10 m/s?) x (20 s%)¥?~2.2cm

a small deflection, but certainly detectable. A small easterly deflection of this type
was actually predicted by Newton and verified by his rival Robert Hooke (of Hooke’s
law fame, 1635-1703), although it was not properly explained until the Coriolis effect
was understood.

9.9 The Foucault Pendulum

As a final and striking application of the Coriolis effect, let us consider the Foucault
pendulum, which can be seen in many science museums around the world and is
named for its inventor, the French physicist Jean Foucault (1819-1868). This is a
pendulum made of a very heavy mass m suspended by a light wire from a tall ceiling.
This arrangement allows the pendulum to swing freely for a very long time and to
move in both the east—-west and north—south directions. As seen in an inertial frame,
there are just two forces on the bob, the tension T in the wire and the weight mg,. In
the rotating frame of the earth, there are also the centrifugal and Coriolis forces, so
the equation of motion in the earth’s frame is

mr=T + mg, + m( xr) x  + 2mr x Q.

Exactly as in the previous section, the second and third terms on the right combine
to give mg, where g is the observed free-fall acceleration, and the equation of motion
becomes

mr =T + mg + 2mr x Q. (9.58)

We can now choose our axes as in the previous section, so that x is east, y is north,
and z vertically up (direction of —g), and the pendulum is as shown in Figure 9.16.

I shall restrict our discussion to the case of small oscillations, so that the angle
between the pendulum and the vertical is always small. This allows two simplifying
approximations: First, the z component of the tension T is well approximated by the
magnitude; that is, 7, = 7 cos 8 ~ T. Second, it is not hard to see that, for small
oscillations, T, &~ mg.!* Putting these two approximations together, we can write

T ~mg. (9.59)

4Look at the z component of (9.58). In the limit of small oscillations, the term on the left and
the last term on the right both approach zero, and you're left with 7, — mg = 0.
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Figure 9.16 A Foucault pendulum comprises a bob of mass m
suspended by a light wire of length L from the point P on a high
ceiling. The tension force on the bob is shown as T and its x and
y components are T, and 7). For small oscillations the angle
is very small.

We now need to examine the x and y components of the equation of motion (9.58).
This requires that we identify the x and y components of T. If you look at Figure 9.16,
you will see that, by similar triangles, 7, /T = —x/L and similarly for 7. Combining
this with (9.59), we find that

T,=-mgx/L and T,=-—mgy/L. (9.60)

The x and y components of g are, of course, zero, and the components of r x €2 are
given in (9.52). Putting all of these into (9.58), we find (after canceling a factor of
m and dropping a term involving z, which is negligible compared to x or y for small
oscillations)

i o= —gx/L+2chos@} 9.61)

y = —gy/L —2xQcosé.

where as usual 6 denotes the colatitude of the location of the experiment. The factor
g/L is just a)oz, where w, is the natural frequency of the pendulum, and €2 cosé is
just §2,, the z component of the earth’s angular velocity. Thus these two equations of
motion can be rewritten as

Il

56—252)'/4—(002)6 = 0
z 9.62
¥+ 29,45 + oly O.} (9:62)

We can solve the coupled equations (9.62) using the trick, introduced in Chapter
2, of defining a complex number

n=ux-+1iy.
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Recall that not only does this complex number contain the same information as the
position in the xy plane, but a plot of 5 in the complex plane is an actual bird’s eye
view of the pendulum’s projected position (x, y). If we multiply the second equation
of (9.62) by i and add it to the first, we get the single differential equation

i+ 2iQ,n0 + oln =0. (9.63)

This is a second-order, linear, homogeneous differential equation and so has exactly
two independent solutions. Thus if we can find two independent solutions, we shall
know that the most general solution is a linear combination of these two. As often
happens, we can find two independent solutions by inspired guesswork: We guess
that there is a solution of the form

n(t) =e (9.64)

for some constant . Substituting this guess into (9.63), we see immediately that it is
a solution if and only if « satisfies

oz2—2522cx—a)02=0

or

a=Q,+,/Q%+ o?
~Q, +w, (9.65)

where the last line is an extremely good approximation since the earth’s angular
velocity €2 is so very much smaller than the pendulum’s w,,. This gives us the required
two independent solutions, and the general solution to the equation of motion (9.63)
is

n = e i%! (Cleiwot + Czevi%’) . (9.66)

To see what this solution looks like, we need to fix the two constants C; and C, by
specifying the initial conditions. Let us suppose that at # = 0 the pendulum has been
pulled aside in the x direction (east) to a position x = A and y = 0, and is released
from rest (v,, = v,, = 0). With these initial conditions, you can easily check that!®?
Cy=C, = A/2, and our solution becomes

n(t) = x () +iy(t) = Ae™' cos w,t. (9.67)

At t = 0 the complex exponential is equal to one, and x = A, while y = 0. Because
Q, < w,, the cosine factor in (9.67) makes many oscillations before the exponential
changes appreciably from one. This implies that, initially, x (¢) oscillates with angular
frequency o, between +A, while y remains close to zero. That is, initially, the
pendulum swings in simple harmonic motion along the x axis, as indicated in Figure
9.17(a).

135 Actually, there is a small subtlety, in that these simple values depend on the (true) assumption
that Q, < w,, as you will see when you check them.
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Figure 9.17 Overhead views of the motion of a Foucault pendulum. (a) For
a while after being released, the pendulum swings back and forth along the
x axis, with amplitude A and frequency w,. (b) As time advances, the plane
of its oscillations slowly rotates with angular velocity equal to €2,, the z
component of the earth’s angular velocity.

However, eventually the complex exponential e begins to change, causing
the complex number n = x + iy to rotate through an angle €2,z. In the Northern
Hemisphere, where €2, is positive, this means that the number x + iy continues
to oscillate sinusoidally (due to the factor cosw,t), but in a direction that rotates
clockwise. That is, the plane in which the pendulum is swinging rotates slowly
clockwise, with angular velocity €2,, as indicated in Figure 9.17(b). In the Southern
Hemisphere, where €2, is negative, the corresponding rotation is counterclockwise.

If the Foucault pendulum is located at colatitude 8 (latitude 90° — 6), then the rate
at which its plane of oscillation rotates is

2, = Qcosd. (9.68)

At the North Pole (6 = 0), Q, = 2 and the rate of rotation of the pendulum is the same
as the earth’s angular velocity. This result is easy to understand: As seen in an inertial
(nonrotating) frame, a Foucault pendulum at the North Pole would obviously swing
in a fixed plane; meanwhile, as seen in the same inertial frame, the earth is rotating
counterclockwise (as seen from above) with angular velocity €2. Clearly then, as seen
from the earth, the pendulum’s plane of oscillation has to be rotating clockwise with
angular velocity S2.

At any other latitude, the result is much more complicated from an inertial point of
view, but the rate of rotation of the Foucault pendulum is easily calculated from (9.68).
At the equator (6 = 90°), Q, = 0 and the pendulum does not rotate. At a latitude
around 42° (the approximate latitude of Boston, Chicago, or Rome),

Q, = Qcosd8’ ~ Q.

Since Q2 equals 360°/day, %Q = 240°/day, and we see that in the course of 6 hours (a
time for which a long, well-built pendulum will certainly continue to swing without
significant damping), the pendulum’s plane of motion will rotate through 60° — an
easily observable effect.
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