1. The matrix $\mathrm{A}=$

$1 / \sqrt{ } 2$	$1 / \sqrt{ } 2$	0
0	0	1
$1 / \sqrt{ } 2$	$-1 / \sqrt{ } 2$	0

represents a finite rotation about a certain axis. Find the direction cosines of the axis and the angle of rotation.
2. Consider the Foucault Pendulum. Compute the rotation frequency of the pendulum as a function of the co-latitude θ.
3. The matrix L represents a rotation by an angle ϕ around some axis. The eigenvalues of L are $\lambda 1=+1, \lambda 2=(\sqrt{3}+\mathrm{i}) / 2 . \lambda 3=(\sqrt{3}-\mathrm{i}) / 2$. Find the angle ϕ.
4. Consider a tensor of third rank whose components $\mathrm{t}_{\mathrm{ijk}}$ are antisymmetric under exchange of any two indices. Show that a single number is sufficient to characterize this tensor and that this number transforms like a pseudoscalar.
5. We want to demonstrate that the 3×3 and 2×2 representation of rotations are identical for infinitesimal rotations on a vector $\mathrm{v}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$.
The 3×3 rotations can be represented as $\operatorname{Exp}[\theta n \cdot M]$ where n is the axis vector, and M are the matrix generators of the rotation, and the rotated vector is $\operatorname{Exp}[\theta n \cdot M] \cdot v$.
The 2 X 2 rotations can be represented as $\operatorname{Exp}[-\mathrm{I} \theta / 2 n \bullet \sigma]$ where n is the axis vector, and σ are the matrix generators of the rotation, and the rotated vector is $\operatorname{Exp}[-\mathrm{I} \theta / 2 n \cdot \sigma] \cdot v$.
a) Perform an infinitesimal rotation about the x-axis with both representations, and show the components transform identically.
b) Repeat for the y-axis.
c) Repeat for the z-axis.

