Physics 6321
Homework 9

Professor Olness
Spring 2024
\#0) (One more from Ch.6)
If the generalized driving forces Q_{i} are not sinusoidal, show that the forced vibrations of the normal coordinates in the absence of damping are given by

$$
\zeta_{i}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} \frac{G_{i}(\omega)}{\omega_{i}^{2}-\omega^{2}} e^{-i \omega t} d \omega
$$

where $G_{i}(\omega)$ is the Fourier transform of Q_{i} defined by

$$
Q_{i}(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} G_{i}(\omega) e^{-i \omega t} d \omega .
$$

If the dissipation function is simultaneously diagonalized along with T and V, show that the forced vibrations are given by

$$
\zeta_{i}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} \frac{G_{i}(\omega)\left(\omega_{i}^{2}-\omega^{2}+i \omega \mathcal{F}_{i}\right)}{\left(\omega_{i}^{2}-\omega^{2}\right)^{2}+\omega^{2} \mathcal{F}_{i}^{2}} e^{-i \omega t} d t
$$

Physics 6321:
Homework $\# 9$:
Prof. Olness
Spring 2024

PROBLEM \#1: Consider the metric:

$$
g_{\mu \nu}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

and vector:

$$
v=\binom{x}{y}
$$

a) Compute the length-squared of the vector v.
b) Write down a rotation matrix R.
c) Show the length of v is invariant under a rotation.
d) Using Mathematica, make a ContourPlot of the length of the vector in the $\{x, y\}$ space. Comment about the result.

PROBLEM \#2: Consider the metric:

$$
g_{\mu \nu}=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

and vector:

$$
v=\binom{x}{y}
$$

a) Compute the length-squared of the vector v.
b) Using Mathematica, make a ContourPlot of the length of the vector in the $\{x, y\}$ space. Comment about the result.
c) Can you think of a physical example where this is the appropriate metric to use to measure distance??? (There are more than one answer, but the more natural the better.)

PROBLEM \#3: Consider the metric:

$$
g_{\mu \nu}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

and vector:

$$
v=\binom{t}{x}
$$

a) Compute the length-squared of the vector v.
b1) Write down a boost matrix B in terms of β and γ.
c1) Show the length of v is invariant under a boost.
b1) Write down a boost matrix B in terms of coshand sinh.
c1) Show the length of v is invariant under a boost in terms of coshand sinh.
d) Using Mathematica, make a ContourPlot of the length of the vector in the $\{\mathrm{t}, \mathrm{x}\}$ space. Comment about the result.

PROBLEM \#4: For the general mass case of $p_{1}+p_{2} \rightarrow p_{12}$ compute the components of all 4 -vectors in terms of invariants of the problem: $\left\{m_{1}^{2}, m_{2}^{2}, s\right\}$. Assume the 3-momentum lies along the z-axis. Hint: The z-component of the momentum should be proportional to: $\Delta\left(s, m_{1}^{2}, m_{2}^{2}\right)$, where $\Delta(a, b, c)=\sqrt{a^{2}+b^{2}+c^{2}-2(a b+b c+c a)}$.

PROBLEM $\# 5$: For the zero mass case of $p_{1}+$ $p_{2} \rightarrow p_{3}+p_{4}$ compute the components of all 4 -vectors in terms of invariants of the problem: $\{s, t, u\}$. Assume the 3 -momentum of $\left\{p_{1}, p_{2}\right\}$ lies along the z axis.

PROBLEM \#6: Consider the reaction: $p \bar{p} \rightarrow$ $3 X$ where X has a rest mass of $140 G e V$. Compute the threshold beam energy for
a) colliding beams, and
b) for a fixed target experiment.

PROBLEM \#7: Consider the rapidity y and the pseudo-rapidity η :

$$
\begin{aligned}
& y=\frac{1}{2} \ln \left(\frac{E+P_{L}}{E-P_{L}}\right) \\
& \eta=-\ln \left[\tan \left(\frac{\theta}{2}\right)\right]
\end{aligned}
$$

a) Make a parametric plot of $\{y, \eta\}$ as a function of m / E where m is the mas of the particle.
b) Show that in the limit $m \rightarrow 0$ that $y \rightarrow \eta$.
c) Make a table of η for $\theta=\left[0^{\circ}, 180^{\circ}\right]$ in steps of 5 degrees.
c) Make a table of θ for $\eta=[0,10]$ in steps of 1 .

PROBLEM \#8: For one-particle phase space, show the folowing equality (with all the steps):

$$
\frac{d^{3} \vec{P}}{(2 \pi)^{3} 2 E}=(2 \pi) \delta\left(P^{2}-m^{2}\right) \frac{d^{4} P}{(2 \pi)^{4}}
$$

PROBLEM \#9: In a Tevatron detector, consider two particles traveling in the transverse direction:

$$
\begin{aligned}
p_{1}^{\mu} & =\{E, 100,0,1\} \\
p_{2}^{\mu} & =\{E, 100,1,0\}
\end{aligned}
$$

where the componets are expresedn in GeV units. E is defined such that the particles are massless.
a) Compute E.
b) For each particle, compute the pseudorapidity η and azimuthal angle ϕ.
c) Explain how the above exercise justifies the correct jet radius definition to be:

$$
R=\sqrt{\eta^{2}+\phi^{2}}
$$

In particular, why is the above correct and $R=$ $\sqrt{\eta^{2}+2 \phi^{2}}$, for example, incorrect.

PROBLEM \#10: Consider the reaction: $p p \rightarrow$ $p p(12 \rightarrow 34)$ with CMS scattering angle θ. The CMS energy is $\sqrt{s}=2 T e V$.
a)

Compute the boost from the CMS frame to the rest frame of \#2 (lab frame)
b) Compute the energy of $\# 1$ in the lab frame.
c) Compute the scattering angle $\theta_{l a b}$ as a function of the CMS θ and invariants.

PROBLEM \#11: Write the 4×4 EM Field Strength tensor $F^{\mu \nu}$ in terms of $\{E, B\}$ fields.

Now apply a boost (Lorentz transformation) along the z axis and compute the transformed $F^{\mu \nu}$.

Examine how the $\{E, B\}$ fields transform and check against your EM textbook results.

