Dimensional Regularization

meets

Freshman E\&M

References:
Fredrick Olness, arXiv:0812.3578
M. Hans, Am.J.Phys. 51 (8) August (1983). p. 694
C. Kaufman, Am.J.Phys. 37 (5), May (1969) p. 560
B. Delamotte, Am.J.Phys. 72 (2) February (2004) p. 170

Fred Olness
CTEQ Summer School

GOAL:

Pythagorean Theorem

METHOD:

Dimensional Analysis

θ
 C

$$
A_{c}=c^{2} f(\theta, \phi)
$$

$$
d V=\frac{1}{4 \pi \epsilon_{0}} \frac{d Q}{r} \quad \lambda=Q^{\prime} y
$$

$$
V=\frac{\lambda}{4 \pi \epsilon_{0}} \int_{-\infty}^{+\infty} d y \frac{1}{\sqrt{x^{2}+y^{2}}}=\infty
$$

Note: ∞ can be very useful

$$
\begin{aligned}
& V(k x)= \\
& =\frac{\lambda}{4 \pi \epsilon_{0}} \int_{-\infty}^{+\infty} d y \frac{1}{\sqrt{(k x)^{2}+y^{2}}} \\
& =\frac{\lambda}{4 \pi \epsilon_{0}} \int_{-\infty}^{+\infty} d\left(\frac{y}{k}\right) \frac{1}{\sqrt{x^{2}+(y / k)^{2}}} \\
& =\frac{\lambda}{4 \pi \epsilon_{0}} \int_{-\infty}^{+\infty} d z \frac{1}{\sqrt{x^{2}+z^{2}}} \\
& =V(x)
\end{aligned}
$$

$$
V(k x)=V(x)
$$

Note: $\infty+c=\infty$

$$
\infty-\infty=c
$$

$$
\begin{array}{ll}
V=\frac{\lambda}{4 \pi \epsilon_{0}} \int_{-L}^{+L} d y \frac{1}{\sqrt{x^{2}+y^{2}}} & \cdot \mathrm{~V}(\mathrm{x}) \text { depends on artificial regulator } \mathrm{L} \\
V=\frac{\lambda}{4 \pi \epsilon_{0}} \log \left[\frac{+L+\sqrt{L^{2}+x^{2}}}{-L+\sqrt{L^{2}+x^{2}}}\right] & \text { •We cannot remove the regulator } \mathrm{L}
\end{array}
$$

All physical quantities are independent of the regulator:

Electric Field

$$
E(x)=\frac{-d V}{d x}=\frac{\lambda}{2 \pi \epsilon_{0} x} \frac{L}{\sqrt{L^{2}+x^{2}}} \rightarrow \frac{\lambda}{2 \pi \epsilon_{0} x}
$$

$$
\delta V=V\left(x_{1}\right)-V\left(x_{2}\right) \underset{L \rightarrow \infty}{\rightarrow} \frac{\lambda}{4 \pi \epsilon_{0}} \log \left[\frac{x_{2}^{2}}{x_{1}^{2}}\right]
$$

Problem solved at the expense of an extra scale L
AND we have a broken symmetry: translation invariance
Shift: $y \rightarrow y^{\prime}=y-c$

$$
y=[+L+c,-L+c]
$$

$$
V=\frac{\lambda}{4 \pi \epsilon_{0}} \int_{-L+c}^{+L+c} d y \frac{1}{\sqrt{x^{2}+y^{2}}}
$$

$$
V=\frac{\lambda}{4 \pi \epsilon_{0}} \log \left[\frac{+(L+c)+\sqrt{(L+c)^{2}+x^{2}}}{-(L-c)+\sqrt{(L-c)^{2}+x^{2}}}\right]
$$

$\mathrm{V}(\mathrm{r})$ depends on y coordinate!!!

Dimensional Regularization

Compute in n -dimensions

$$
d y \rightarrow d^{n} y=\frac{d \Omega_{n}}{2} \quad y^{n-1} d y
$$

$$
\Omega_{n}=\int d \Omega_{n}=\frac{2 \pi^{n / 2}}{\Gamma(n / 2)} \quad \Omega_{1,2,3,4}=\left\{2,2 \pi, 4 \pi, 2 \pi^{2}\right\}
$$

$$
\begin{aligned}
& V=\frac{\lambda}{4 \pi \epsilon_{0}} \int_{0}^{+\infty} d \Omega_{n} \frac{y^{n-1}}{\mu^{n-1}} \frac{d y}{\sqrt{x^{2}+y^{2}}} \\
& V=\frac{\lambda}{4 \pi \epsilon_{0}}\left(\frac{\mu^{2 \epsilon}}{x^{2 \epsilon}} \frac{\Gamma[\epsilon]}{\pi^{\epsilon}}\right)
\end{aligned}
$$

Dimensional Regularization

All physical quantities are independent of the regulators:

Electric Field

$$
E(x)=\frac{-d V}{d x}=\frac{\lambda}{4 \pi \epsilon_{0}}\left[\frac{2 \epsilon \mu^{2 \epsilon} \Gamma[\epsilon]}{\pi^{\epsilon} x^{1+2 \epsilon}}\right] \underset{\epsilon \rightarrow \infty}{\rightarrow} \frac{\lambda}{2 \pi \epsilon_{0}} \frac{1}{x}
$$

Energy

$$
\delta V=V\left(x_{1}\right)-V\left(x_{2}\right)_{\epsilon \rightarrow \infty}^{\rightarrow} \frac{\lambda}{4 \pi \epsilon_{0}} \log \left[\frac{x_{2}^{2}}{x_{1}^{2}}\right]
$$

Problem solved at the expense of an extra scale μ and regulator ε
Translation invariance is preserved!!!

Dimensional Regularization respects symmetries

$$
V \rightarrow \frac{\lambda}{4 \pi \epsilon_{0}}\left[\frac{1}{\epsilon}+\ln \left[\frac{e^{-\gamma_{E}}}{\pi}\right]+\left[\frac{\mu^{2}}{x^{2}}\right]\right]
$$

Original

$$
V \rightarrow \frac{\lambda}{4 \pi \epsilon_{0}}\left[\frac{1}{e}+\ln \left[\frac{e^{-\gamma_{E}}}{\pi}\right]+\left[\frac{\mu^{2}}{x^{2}}\right]\right]
$$

$$
V \rightarrow \frac{\lambda}{4 \pi \epsilon_{0}}\left[\frac{1}{\epsilon}+\ln \left[\frac{e^{-\gamma}}{\pi}\right]+\left[\frac{\mu^{2}}{x^{2}}\right]\right]
$$

$$
\begin{aligned}
& V_{\overline{M S}}\left(x_{1}\right)-V_{\overline{M S}}\left(x_{2}\right)=\delta V=V_{M S}\left(x_{1}\right)-V_{M S}\left(x_{2}\right) \\
& V_{\overline{M S}}\left(x_{1}\right)-V_{M S}\left(x_{2}\right) \neq \delta V \neq V_{M S}\left(x_{1}\right)-V_{\overline{M S}}\left(x_{2}\right)
\end{aligned}
$$

$$
V \rightarrow \frac{\lambda}{4 \pi \epsilon_{0}}\left[\frac{1}{\epsilon}+\ln \left[\frac{e^{-\gamma_{E}}}{\pi}\right]+\left[\frac{\mu^{2}}{x^{2}}\right]\right]
$$

$$
\frac{D(\epsilon)}{\epsilon}=\left(\frac{4 \pi \mu^{2}}{Q^{2}}\right) \frac{\Gamma(1-\epsilon)}{\Gamma(1-2 \epsilon)} \rightarrow \frac{1}{\epsilon}+\ln \left[\frac{e^{-\gamma_{E}}}{4 \pi}\right]+\left[\frac{\mu^{2}}{Q^{2}}\right]
$$

Dimensional Transmutation

$$
V(r) \sim \frac{1}{r^{D-2}}
$$

$$
E(r) \sim \frac{1}{r^{D-1}}
$$

$$
\begin{gathered}
\sigma=f \otimes \omega \\
\frac{d \sigma}{d \mu}=0=\frac{d f}{d \mu} \omega+f \frac{d \omega}{d \mu} \\
\frac{1}{\tilde{f}} \frac{d \tilde{f}}{d \ln [\mu]}=-\gamma=-\frac{1}{\tilde{\omega}} \frac{d \tilde{\omega}}{d \ln [\mu]} \\
\frac{d \tilde{f}}{d \ln [\mu]}=-\gamma \tilde{f} \quad \frac{d f}{d \ln [\mu]}=P \otimes f \\
\tilde{f} \sim \mu^{-\gamma}
\end{gathered}
$$

Recap

Regulator provides unique definition of $\mathrm{V}, \mathrm{f}, \omega$

Cutoff regulator L:
simple, but does NOT respect symmetries
Dimensional regulator ε :
respects symmetries: translation, Lorentz, Gauge invariance introduces new scale μ

All physical quantities $(\mathrm{E}, \mathrm{dV}, \sigma)$ are independent of the regulator Renormalization group equation: $\mathrm{d} \sigma / \mathrm{d} \mu=0$

We can define renormalized quantities (V,f, ω)
Renormalized ($\mathrm{V}, \mathrm{f}, \omega$) are scheme dependent and arbitrary
Physical quantities ($\mathrm{E}, \mathrm{dV}, \sigma$) are unique and scheme independent if we apply the scheme consistently

