We already studies

Now we consider

Drell-Yan Process

\[e^+ e^- \]

Important for Tevatron and LHC

Fundamental process for hadron-hadron and lepton-lepton collisions, e.g.,

\[\text{Drell-Yan} \quad e^+ e^- \rightarrow 2 \text{ jets} \]

A Drell-Yan Example: Discovery of J/ψ

The Process: \(p + Be \rightarrow e^+ e^- X \)

at BNL AGS

very narrow width \(\Rightarrow \) long lifetime

Drell-Yan and \(e^+ e^- \) have an interesting historical relation
We'll look at Drell-Yan
Specifically W/Z production

Schematically:
\[d\sigma(q\bar{q} \rightarrow l^+ l^-) = d\sigma(q\bar{q} \rightarrow \gamma^*) \times d\sigma(\gamma^* \rightarrow l^+ l^-) \]

For example:
\[\frac{d\sigma}{dQ^2 dy}(q\bar{q} \rightarrow l^+ l^-) = \frac{d\sigma}{dt}(q\bar{q} \rightarrow \gamma^*) \times \frac{\alpha}{3\pi Q^2} \]
Partonic CMS has longitudinal momentum w.r.t. the hadron frame.

\[p_{12} = (p_1 + p_2) = (E_{12}, 0, 0, p_L) \]
\[E_{12} = \frac{\sqrt{s}}{2} (x_1 + x_2) \]
\[p_L = \frac{\sqrt{s}}{2} (x_1 - x_2) \equiv \frac{\sqrt{s}}{2} x_F \]

The rapidity is defined as:

\[y = \frac{1}{2} \ln \left(\frac{E_{12} + p_L}{E_{12} - p_L} \right) \]

Partonic CMS has longitudinal momentum w.r.t. the hadron frame.

\[k_1 = x_1 P_1 \quad k_2 = x_2 P_2 \]

\[p_1 = x_1 P_1 \quad p_2 = x_2 P_2 \]

\[x_F = \frac{1}{2} \ln \left(\frac{x_1}{x_2} \right) \]

\[\tau = x_1 x_2 = \frac{s}{\sqrt{s}} \equiv \frac{Q^2}{s} \]

\[y = \frac{1}{2} \ln \left(\frac{x_1}{x_2} \right) \]

\[\tau = x_1 x_2 \]

\[x_{1,2} = \sqrt{\tau} e^{\pm y} \]
Kinematics for W production at Tevatron & LHC

How do we measure the W-boson mass?

Can't measure W directly
Can't measure ν directly
Can't measure longitudinal momentum

We can measure the P_T of the lepton

The Jacobian Peak

Suppose lepton distribution is uniform in θ

The dependence is actually $(1+\cos\theta)^2$, but we'll worry about that later

What is the distribution in P_T?

We find a peak at $P_T^{\max} \approx M_W/2$

Drell-Yan Cross Section and the Scaling Form

Using: $\hat{\sigma}_0 = \frac{4\pi\alpha^2}{9\hat{s}} Q_i^2$ and $\delta(Q^2-\hat{s}) = \frac{1}{sx_1} \delta(x_2-\frac{\tau}{x_1})$

we can write the cross section in the scaling form:

$Q^4 \frac{d\sigma}{dQ^2} = \frac{4\pi\alpha^2}{9} \sum_{q,q'} Q_i^2 \int_0^{1/sx_1} \frac{dx_1}{x_1} \tau \left| q(x_1)\bar{q}(\tau/x_1) + q(x_1)\bar{q}(\tau/x_1) \right|$
\[e^+ e^- \quad \text{R ratio} \]

\[R = \frac{\sigma(e^+ e^- \rightarrow \text{hadrons})}{\sigma(e^+ e^- \rightarrow \mu^+ \mu^-)} \]

\[e^+ e^- \quad \text{NLO corrections} \]

Define the energy fractions \(E_i \):

\[x_i = \frac{E_i}{\sqrt{s}/2} = \frac{2p_i \cdot q}{s} \]

Energy Conservation:

\[\sum_i x_i = 2 \]

Range of \(x \):

\[x_i \subset [0, 1] \]

Exercise: show 3-body phase space is flat in \(dx_1 dx_2 \).
3-Particle Phase Space

\[x_i = \frac{E_i}{\sqrt{s}/2} \]
\[x_i \in [0, 1] \]
\[x_1 + x_2 + x_3 = 2 \]

\[d\Gamma \sim dx_1 \, dx_2 \]

3-Particle Configurations

\[\sigma_0 = \frac{4\pi\alpha^2}{s} \sum c_i^2 \quad C_F = 4/3 \]

After symmetrization

\[\frac{1}{\sigma_0} \frac{d\sigma}{dx_1 \, dx_2} = \frac{\alpha_s}{2\pi} C_F \frac{x_1^2 + x_2^2 + x_3^2}{(1 - x_1)(1 - x_2)(1 - x_3)} \]

Singularities cancel between 2-particle and 3-particle graphs

\[\sigma_2^{(\epsilon)} = \sigma_0 \, C_F \, \frac{\alpha_s}{\pi} (...) \left[+\frac{1}{\epsilon^2} + \frac{-3}{2\epsilon} + \frac{\pi^2}{2} - 4 \right] \]

\[\sigma_3^{(\epsilon)} = \sigma_0 \, C_F \, \frac{\alpha_s}{\pi} (...) \left[+\frac{1}{\epsilon^2} + \frac{3}{2\epsilon} + \frac{-\pi^2}{2} - \frac{19}{4} \right] \]

\[\sigma_2^{(\epsilon)} + \sigma_3^{(\epsilon)} = \sigma_0 \, C_F \, \frac{\alpha_s}{\pi} (...) \left[0 + 0 + 0 + \frac{-35}{4} \right] \]

Same result with gluon mass regularization

\[e^+ e^- \]

Differential Cross Sections
Differential Cross Section

What do we do about soft and collinear singularities????

Introduce the concept of “Infrared Safe Observable”

The soft and collinear singularities will cancel **ONLY**
if the physical observables are appropriately defined.

Infrared Safe Observables

Observables must satisfy the following requirements:

Soft

$$\mathcal{O}_{n+1}(p_1, \ldots, p_n, p_s) \rightarrow \mathcal{O}_n(p_1, \ldots, p_n)$$

if $$p_s \rightarrow 0$$

Collinear

$$\mathcal{O}_{n+1}(p_1, \ldots, p_n, p_a, p_b) \rightarrow \mathcal{O}_n(p_1, \ldots, p_n + p_b, \ldots, p_n)$$

if $$p_a \parallel p_b$$

Examples: Infrared Safe Observables

- Event shape distributions
- Jet Cross sections

Un-Safe Infrared Observables:

- Momentum of the hardest particle
 (affected by collinear splitting)
- 100% isolated particles
 (affected by soft emissions)
- Particle multiplicity
 (affected by both soft & collinear emissions)
Infrared Safe Observables: Define Jets

Soft

if \(p_s \rightarrow 0 \)

\[\mathcal{O}_{n+1}(p_1, \ldots, p_n, p_s) \rightarrow \mathcal{O}_n(p_1, \ldots, p_n) \]

Collinear

if \(p_a \parallel p_b \)

\[\mathcal{O}_{n+1}(p_1, \ldots, p_n, p_b, \ldots, p_n) \rightarrow \mathcal{O}_n(p_1, \ldots, p_n + p_b, \ldots, p_n) \]

Jet Cone

\[R^2 = (\Delta \eta)^2 + (\Delta \phi)^2 \]

Pseudo-Rapidity vs. Angle

\[\eta = -\ln(\tan(\theta/2)) \]

Jet Cone

\[R^2 = (\Delta \eta)^2 + (\Delta \phi)^2 \]
HOMEWORK: Jet Cone Definition

PROBLEM #2: In a Tevatron detector, consider two particles traveling in the transverse direction:

\[
p_1^\perp = \{ E, 100, 0, 1 \}
\]

\[
p_2^\perp = \{ E, 100, 1, 0 \}
\]

where the components are expressed in GeV units. \(E \) is defined such that the particles are massless.

a) Compute \(E \).

b) For each particle, compute the pseudorapidity \(\eta \) and azimuthal angle \(\phi \).

c) Explain how the above exercise justifies the correct jet radius definition to be:

\[
R = \sqrt{\eta^2 + \phi^2}
\]

In particular, why is the above correct and \(R = \sqrt{\eta^2 + 2\phi^2} \), for example, incorrect.
\[P_{\mu} = \{P_t, P_x, P_y, P_z\} \]
\[P_{\mu} = \{P_+, \mathbf{P}_\perp, P_-\} \]
\[\mathbf{P}_\perp = \{P_x, P_y\} \]
\[P_{\pm} = \frac{1}{\sqrt{2}} (P_t \pm P_z) \]

1) Compute the metric \(g_{\mu\nu} \) in the light-cone frame, and compute \(\mathbf{P}_1 \cdot \mathbf{P}_2 \) in terms of the light-cone components.

2) Compute the boost matrix \(B \) for a boost along the \(z \)-axis, and show the light-cone vector transforms in a particularly simple manner.

3) Show that a boost along the \(z \)-axis uniformly shifts the rapidity of a vector by a constant amount.

HOMEWORK: Rapidity vs. Pseudo-Rapidity

PROBLEM #1: Consider the rapidity \(y \) and the pseudo-rapidity \(\eta \):

\[y = \frac{1}{2} \ln \left(\frac{E + P_z}{E - P_z} \right) \]
\[\eta = -\ln \left[\tan \left(\frac{\theta}{2} \right) \right] \]

a) Make a parametric plot of \(\{y, \eta\}\) as a function of the particle.

b) Show that in the limit \(m \to 0 \) that \(y \to \eta \).

c) Make a table of \(\eta \) for \(\theta = [0^\circ, 180^\circ] \) in steps of 5

d) Make a table of \(\theta \) for \(\eta = [0, 10] \)

Infrared Safe Observables: Define Jets

Problem:
The cone definition is simple, **BUT** it is too simple

\[R^2 = (\Delta\eta)^2 + (\Delta\phi)^2 \]

 Such configurations can be mis-identified as a 3-jet event

See talk by
Dave Soper &
Andrew Larkoski
End of lecture 4: Recap

Drell-Yan: Tremendous discovery potential

Need to compute 2 initial hadrons

e\text{e}^+\text{e}^- processes:

Total Cross Section: singularity

Infrared Safe Observables
Stable under soft and collinear emissions

Jet definition
Cone definition is simple:
... it is TOO simple

Final Thoughts

Scaling, Dimensional Analysis, Factorization, Regularization & Renormalization, Infrared Safety...

Can you find the Nobel Prize???

Hi ET
Jet Excess

CDF Collaboration, PRL 77, 438 (1996)
H1 Collaboration, ZPC74, 191 (1997)
ZEUS Collaboration, ZPC74, 207 (1997)

Hi Q Excess

Can you find the Nobel Prize???

Mmm
GeV
cross section
p + N \rightarrow m^+ m^- + X

Thanks to:

Dave Soper, George Sterman,
John Collins, & Jeff Owens for ideas borrowed from previous CTEQ introductory lecturers

Thanks to Randy Scalise for the help on the Dimensional Regularization.

Thanks to my friends at Grenoble who helped with suggestions and corrections.

Thanks to Jeff Owens for help on Drell-Yan and Resummation.

To the CTEQ and MCnet folks for making all this possible.

and the many web pages where I borrowed my figures...
Keep an open mind!!!

END OF LECTURE

4