This exercise is to be handed in at the beginning of lab; no lab quiz!!!

STEP 1: It is a **very** hot day in Dallas, and the speed of sound is 400 m/s. Given the formula c=331±0.6C, determine the present temperature. (We will use c=400m/s for the prelab exercise ONLY to make the numbers come out nicely.)

STEP 2: OPEN PIPE: Draw the resonant standing wave patterns corresponding to the lowest 3 frequencies of an OPEN pipe. (You may draw pressure or displacement--your choice.)

		_

$$L = \frac{1}{2} \lambda$$

$$L = \frac{\square}{2} \lambda$$


$$L = \frac{1}{2} \lambda$$

You should observe a pattern. We will now calculate the frequency. If $L=(N/2)\lambda$ where N=1,2,3..., then $1/\lambda=2L/N$. Using $c=\lambda f$, we have:

 $f = \frac{c}{\lambda} = \frac{c}{2L} N$. Use this formula, with c=400m/s to compute the first 3 resonant frequencies.

For the length of the pipe, assume L=1m.

STEP 3: CLOSED PIPE: Draw the resonant standing wave patterns corresponding to the lowest 3 frequencies of an CLOSED pipe. (You may draw pressure or displacement--your choice.)

You should observe a pattern. We will now calculate the frequency. If $L=(N/4)\lambda$ where N=1,2,3..., then $1/\lambda=4L/N$. Using $c=\lambda f$, we have:

 $\mathbf{f} = \frac{\mathbf{c}}{\lambda} = \frac{\mathbf{c}}{4L} \mathbf{N}$. Use this formula, with c=400m/s to compute the first 3 resonant frequencies.

For the length of the pipe, assume L=1m.

STEP 4: COMPARISON:

Fill in the following tables. (Yeah, we only calculated the first 3 resonances, but you're smart and can figure out the pattern--we make use of this in the lab.)

OPEN PIPE				
Resonance	Frequency			
1				
2				
3				
4				
5				

STEP 5:	REMARKS:
---------	----------

Comments and Conclusions.

CLOSED PIPE			
Resonance	Frequency		
1			
2			
3			
4			
5			