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The Magic Cube’s cubies are twiddled

by cubists and solved by cubemeisters

by Douglas R. Hofstadter

Cubitis magikia, n. A severe mental
disorder accompanied by itching of the
fingertips that can be relieved only by
prolonged contact with a multicolored
cube originating in Hungary and Japan.
Symptoms often last for moenths. Highly
contagious.

hat this stuffy medical-diction-

ary entry fails to mention is

that contact with the multicol-
ored cube not only cures the itchiness
but also causes it. Furthermore, it fails
to point out that the affliction can be
highly pleasurable. I ought to know; I
have suffered from it for the past year
and still exhibit the symptoms.

Biivés Kocka—the Magic Cube, also

known as Rubik’s Cube—has simulta-
neously taken the puzzle world, the
mathematics world and the computing
world by storm. Seldom has a puzzle so
fired the imagination of so many people,
perhaps not since Sam Loyd’s famous
15 Puzzle, which caused mass insanity
when it came out in the 19th century and
is still one of the world’s most popular
puzzles. The 15 Puzzle and the Magic
Cube are spiritual kin, the one being a
two-dimensional problem of restoring
the scrambled numbered pieces of a
4 X 4 square to their proper positions
and the other being a three-dimensional
problem of restoring the scrambled col-
ored pieces of a3 X 3 X 3 cube to their
proper positions. The solutions of both
demand that the solver be willing to
seemingly undo precious progress time
and time again; there is no route to
the goal that does not call for a partial
but temporary destruction of the order
achieved up to that point. If this is a
difficult lesson to learn with the 15 Puz-
zle, it is much harder with the Magic
Cube. And both puzzles have the fiend-
ish property that well-meaning bum-
blers or cunning rogues can take them
apart and put them back together in in-
nocent-looking positions from which

the goal is absolutely unattainable,

thereby causing the would-bs solver in-
describable anguish.

This Magic Cube is much more than
just a puzzle. It is an ingenious mechani-

20

cal invention, a pastime, a learning tool,
a source of metaphors, an inspiration. It
now seems an inevitable object, but it
took a long time to be discovered. Some-
how, though, the time was ripe, because
the idea germinated and developed
nearly in parallel in Hungary and Japan
and perhaps even elsewhere. A report
surfaced recently of a French govern-
ment official who remembers having
encountered such a cube, made out of
wood, in 1920 in Istanbul and then again
in 1935 in Marseilles. Without confir-
mation the claim seems dubious. In any
event Rubik's work was completed by
1975, and his Hungarian patent bears
that date. Quite independently, how-
ever, Terutoshi Ishige, a self-taught en-
gineer and the owner of a small iron-
works near Tokyo, came up with much
the same design within a year of Rubik
and filed for a Japanese patent in 1976.
Ishige also deserves credit for this won-
derful insight.

Who is Rubik? Erné Rubik is a teach-
er of architecture and design at the
School for Commercial Artists in Buda-
pest. Seeking to sharpen his students’
ability to visualize three-dimensional
objects, he came up with the idea of a
3 X 3 X 3 cube any of whose six 3 X 3
faces could rotate about its center, yet in
such a way that the cube as a whole
would not fall apart. Each face would
initially be colored uniformly, but re-
peated rotations of the various faces
would scramble the colors horribly.
Then his students had to figure out how
to undo the scrambling.

When 1 first heard the cube described
over the telephone, it sounded like a
physical impossibility. By all logic it
ought to fall apart into its constituent
»cubies” (one of the many useful and
amusing terms invented by “cubists”
around the world). Take any corner cu-
bie—what is it attached to? By imagining
rotating each of the three faces to which
it belongs you can see that the corner
cubie in question is detachable from
each of its three edge-cubie neighbors.
How then is it held in place? Some peo-
ple postulate magnets, rubber bands or
elaborate systems of twisting wires in

the interior of the cube, yet the design
is remarkably simple and involves no
such items.

In fact, the Magic Cube can be disas-
sembled in a few seconds [see bottom il-
lustration on page 25), revealing an interi.
or structure so simple that one has to
ponder how it can do what it does. It
actually does fall apart. To see What
holds it together first observe that there
are three types of cubie: six center cu-
bies, 12 edge cubies and eight corner cu-
bies. The center cubies have only one
“facelet,” the edge cubies have two face-
lets and the corner cubies have three.
Moreover, the six center cubies are real-
ly not cubical at all—they are just fa-
cades attached to axles that issue from a
sixfold spindle at the middle. The other
cubies are nearly complete cubes, ex-
cept that each one has a blunt little
“foot” reaching toward the middle of
the cube and some curved nicks facing
inward.

The basic trick is that cubies mutually
hold one another in by means of their
feet, without any cubie’s being attached
to any other. Edge cubies hold corner
cubies’ feet, corner cubies hold edge cu-
bies’ feet. Center cubies are the key-
stones. As any layer, say the top one,
rotates it holds.itself together horizon-
tally and is held in place vertically by its
own center and by the equatorial layer
below it. The equatorial layer has a
sunken circular track (formed by the
nicks in its cubies) that guides the mo-
tion of the upper layer's feet and helps to
hold the upper layer together.

In his definitive treatise “Notes on Ru-
bik’s ‘Magic Cube’” David Singmaster,
professor of mathematical sciences and
computing at the Polytechnic of the
South Bank in London, defines the “ba-
sic mechanical problem” as that of fig-
uring out how the cube is constructed. 1
sometimes wonder whether Rubik’s in-
tended visualization task for his stus’
dents was to solve the unscrambling
problem (Singmaster calls it the “basic
mathematical problem") or to solve the
mechanical problem. I suspect the latter
is the harder of the two. I myself must
have put in more than 50 hours of work,
distributed over several months, before
I solved the unscrambling problem, and
I never did solve the mechanical prob-
lem until I saw the cube disassembled.
Singmaster informally estimates that
people who eventually solve the -un-
scrambling problem (without hints) take
on the average two weeks of concentrat-
ed effort. Of course, it is hard for anyone
who has done it to say exactly how long
it took (how can you tell play from
work?), but it is safe to say that if you
are destined to solve the unscrambling
problem at all, it will take you some-
where between five hours and a year. |
trust this is reassuring.

An important fact many people fail to
appreciate at first is that restoring the
cube to the Start position (the state




small science. )
A word of warnin
tions to the mechanical proble

The Plummer-cross configuration

g: Proposed solu-
m are of-

ten lacking in clarity, having either too
much detail or too little. It is certainly a
challenge to come up with a -

that has the multifaceted twistability of
the Magic Cube, but it is perhaps no less
of a challenge to describe the mecha-
nism in language and diagrams other
people can readily comprehend. By the
same token, to convey algorithms that
restore the cube to Start calls for a good,

An alternate coloring requiring 12 colors

clear notation. Singmaster himself has
an excellent notation that is now consid-
ered standard; I shall present it below. A
second word of warning: | am not a
wcubemeister” (defined as one who has
contributed to the profound science of
cubology). I am a mere cubist, an am-
ateur who is amazed by the cube and
by the virtuosos who have mastered it.
Therefore I am not a suitable recipient

An alternate coloring requiring eight colors
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F stands for face, E for edge, C for corner

of novel solutions to the mechanical
problem or the unscrambling problem,
of which by now there are hundreds. I
recommend that readers who believe
they have some novel insight communi-
cate it to Singmaster, who periodically
updates his booklet. It will soon be dis-
tributed to bookstores in this country
by Enslow Publishers of Hillside, N.J.,
at $5.95. Singmaster’s address is De-
partment of Mathematical Sciences and
Computing, Polytechnic of the South
Bank, London SE1 0AA, England.
The reader’s appetite has by now, I
trust, been whetted to the point where
immediate possession of a Magic Cube
is an urgent priority. Fortunately this
can be arranged quite easily. Magic
Cubes are being manufactured both by
Logical Games, Inc., and by the Ideal
Toy Corporation. The name Rubik's
Cube applies only to the Ideal version,
but in all intrinsic ways either version is
equally “magic.” Cubes are available by
mail order from Logical Games (4509
Martinwood Drive, Haymarket, Va.
22069) for $9 postpaid in the U.S. and
at many toy and department stores for
about $10. It is likely that many people
will buy them, little suspecting the pro-
found difficulty of the *“basic mathe-
matical problem.” They will innocently

Pattern on any face of the Slice Group
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turn four or five faces and suddenly find
themselves hopelessly lost. Then, per-
haps frantically, they will begin turning
face after face one way and then anoth-
er, as it dawns on them that they have
irretrievably lost something precious.
They feel a little like a child watching a
toy balloon drift into the sky.

It is a fact that the cube can be ran-
domized with just a few turns. Let that
be a warning to the beginner. Many be-
ginners try 10 claw their way back to
Start by first getting a single face done.
Then, a bit stymied, they leave the par-
tially solved cube lying around where
a friend may spot it. The well-known
“Don’t touch it” syndrome sets in when
the friend picks it up and says, “What's
this?" The would-be solver, terrified
that the hard-won progress will be de-
stroyed, shrieks, “Don’t touch it!" Ironi-
cally, victory can come only through a
more flexible attitude allowing precisely
that destruction.

For the beginner there is an awesome
sense of irreversibility about destroying
the Start position, a kind of fear of tum-
bling off the edge of a precipice. When
my own first cube (I now have five) was

first messed up (by a guest), I felt both

relieved (because it was inevitable) and
sad (because I feared the Start position
was gone forever). The physicist in me
was reminded of entropy. Once the Start
position had become irretrievable each
new twist of one face or another scemed
irrelevant. To my naive eye there was no
distinguishing one messed-up state from
another, just as to the eye there is no
distinguishing one plate of spaghetti
from another, one pile of fall leaves
from another and so on. The details
meant nothing to me, hence they did not
register. As I performed my “random
walk™ the vastness of the space of pos-
sible shufflings of the little cubies be-
came vivid.

As with a deck of cards, one can cal-
culate the exact number of possible re-
arrangements of the cube. An initial es-
timate would run this way. The first ob-
servation—a rather elementary one—is
that on the rotation of any face each
corner goes to another corner, each edge
to another edge and the center of the
face stays put (except for its invisible
rotation). Therefore corners mix only
with their own kind, and the same goes
for edges. There are eight corner cubies
and eight corner “cubicles” (the spatial
niches, regardless of their content). Cu-
bies and cubicles are to the cube as chil-
dren and chairs are to the game of musi-
cal chairs. Each corner cubie can be ma-
neuvered into any of the eight corner
cubicles. This means that we have eight
possible fillers for cubicle No. 1, seven
for cubicle No. 2, six for cubicle No. 3
and so on. Hence the corners can be
placed in their cubicles in 8 X 7 X 6 X
5 X 4 X 3 X 2 X 1(=8) different ways.
Each corner, however, can be in any one

of three orientations. Thus one woulg
expect a further factor of 3% from the
corners. One would expect the same
for the 12 edge cubies: 12 objects can
be permuted among themselves in 12|
different ways, and then if each of
them has two possible orientations, that
gives another factor of 212. The center
cubies never leave their Start positions
(unless the cube is rotated as a whole),
hence they do not contribute. If we mul-
tiply the numbers out, we get 519,024,
039,293,878,272,000 possible positions,
about 5 X 1020,

But there is an assumption here: that
any cubie can be got to any cubicle in
any orientation, regardless of the oth-
er cubies’ positions and orientations. As
we shall see, this is not quite the case. It
turns out there is a constraint on the ori-
entation of the corner cubies: any seven
can be oriented arbitrarily, but the last
one is then forced, thus removing a fac-
tor of three. Similarly, there is a con-
straint on edge cubies: of the 12 any 11
can be oriented arbitrarily, but the last
one is then determined, so that another
factor of two is removed. There is one
final constraint on the permutations of
cubies (disregarding their orientations)
that says you can place all but two
of them wherever you want but the
last two are forced. This removes a fi-
nal factor of two, reducing the estimate
above by a factor of 12, bringing the
possibilities down to a mere 43,252,-
003,274,489,856,000, about 4 X 10%.
still, it must be said, this does slight-
ly exceed the assertion on Ideal’s la-
bel: “More than three billion combi-
nations.”

Another way of thinking about this
factor of 12 is that if you begin at Start,
you are limited to a twelfth of the “obvi-
ous™ states, but if you disassemble your
cube and reassemble it with a single cor-
ner cubie twisted by 120 degrees, you
are now in a formerly inaccessible state,
from which an entire family of 43,252,-
003,274,489,856,000 new states is ac-
cessible. There are 12 such nonoverlap-
ping families of states of the cube, usu-
ally called orbits by group theorists.

Speaking of impossible twists, I
should like to mention a lovely paral-
lel in particle physics that was pointed
out by Solomon W. Golomb (a famil-
iar name to many of Martin Gardner’s
readers). It is impossible to make any
sequence of moves that will leave just
one corner cubie twisted a third of a full
turn and everything else the same. Now,
recalling the famoushypothetical funda-
mental particle with a charge of +1/3
and its antiparticle with a charge of
—1/3, Golomb calls a clockwise one-
third twist a quark and a counterclock-
wise one-third twist an antiquark. Like
their cubical namesakes, quark particles
have proved to be tantalizingly elusive,
and many theoretical physicists now be-
lieve in quark confinement: the principle




that it is impossible to have an isolated
free quark (or antiquark). This corre-
spondence between cubical quarks and
particle quarks is a nice one.

Actually the connection runs even
deeper. Quark particles cannot exist
free, but they can exist bound together
in groups: a quark-antiquark pair is a
meson, and a quark trio with integral
charge is a baryon. (An example is the
proton, with a charge of +1.) Now, in
the Magic Cube, amazingly enough, it is
possible to give two corner cubies one-
third twists, provided they are in oppo-
site directions (one clockwise, the other
counterclockwise). It is also possible to
give three corner cubies one-third twists,
provided they are all in the same direc-
tion. Thus Golomb calls a state with two
oppositely twisted corners a meson and
one with three corners twisted in the
same direction a baryon. In the particle
world only quark combinations with an
integral amount of charge can exist. In
the cubical world only quark combina-
tions with an integral amount of twist
are allowed. That is just another way of
saying the orientation of the eighth cor-
ner cubie is always forced by the first
seven. In the cubical world the underly-
ing reason for quark confinement lies in
group theory. There may be a close-
ly related group-theoretical explanation
for the confinement of quark particles.
That remains to be seen, but in any gvent
the parallel is provocative and p ing.

If we have a pristine cube (“'

Start position), what kind of
quence will create a meson or 2

la- Here we have an example of f
bi- powerful idea in cu gy: the
“canned" move sequences thaf
i plish some specific reordering
art cubies, leaving cverything_:
Wi touched (invariant, as group
Sir say). There are many differeti
it such canned move sequent
- l heard them called opera
Ate forms, wqrds, tools, proces
52"' ' vers, routines, subroutines &8
ac- the first three being group-tHEBE
ap- 3 terms and the last three beill§
4 ed from computer-science argot. Each
term has its own flavor, and I like to use
I them all. <
al- In order to talk about proceises we
ted need precision, and that means & good
sl technical notation. 1 shall therefore
or’s present Singmaster’s notation now. First
ny we need a way of referring to any partic-
st ular face of the cube. One possibility is
ull to use the names of colors as the names
W, of the faces, even after the colors of the
To: cubies have become mixed up. It might
/3 seem that calling a face white, say,
of would be meaningless if white is scat-
g tered all over the place. Remember,
k- however, that the white center cubie
ke never moves with respect to the five oth-
1as er center cubies, and so it defines the
e, “home face” for white. Then why not
= use color names for faces? The problem
le

Disassembly (a-1) and assembly (g-1). Always reestablish original Start position!
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The urf cubie (gray) and the ur cubie (color)

is that different cubes come with their
colors arranged differently. Even two
cubes from one manufacturer may have
different Start positions. A more general
convention is to refer to faces simply as
“left” and “right,” “front” and “back”
and “top” and “bottom.” Unfortunately
the initials create conflicts. Singmaster
resolves the conflict by replacing “top”
and “bottom” with “up” and “down.”
Now we have six faces: L, R, F, B. U. D.
Any particular cubie can be designated
by lowercase letters naming the faces it
belongs to. Thus ur (or ru) stands for the
edge cubie on the right side of the top
layer and wrf for the corner cubie in
front of it [see illustration above].

The most natural move for a right-
handed cubist seems to be to grasp the

y

right face with the thumb pointing up
along the front face and to move the
thumb forward. Seen from the right side
this maneuver causes a clockwise quar-
ter twist of the R face. This move will be
designated R [see illustration below]. The
mirror-image move, where the left hand
turns the L side counterclockwise (as
seen from the left), is L1, or for short
L. A clockwise twist of the L side is
called, naturally, L. A 90-degree clock-
wise turn of any face (from the point of
view of an observer looking at the cen-
ter of that face) is named by the letter
for that face, and its inverse—the coun-
terclockwise quarter turn—has a prime
mark (°) or a superscript —1 following
the face's initial. Quarter turns will
henceforward be called ¢ turns.

With this nomenclature we can now
write any move sequence, no matter
how complex. A trivial example is four
successive RS, which we shall write as
R4. In the language of group theory this
is the identity operation: it has zero ef-
fect. An equation expressing it is R* = L
Here / stands for the “action” of doing
nothing at all.

Suppose we twist two different faces,
say R first, then U. We shall transcribe
that as RU, not as UR. Notice first of all
that RU and UR are quite different in
their effects. To check this out, first per-
form RU on a pristine cube, notice its
effects, then undo it, try UR and see how
its effects differ. The inverse of RU is
quite obviously U'R’, not R'U'.(Inciden-
tally, this strategy of experimenting with

move sequences on a pristine cube is

R, a natural move for a right-handed cubist

26

most helpful. Very early | found 1t use-
ful to buy a second cube so that I could
work on solving one while experiment-
ing with the other, pever-etting the sec-
ond one get far from Start.)

What is the effect of a particular
wword"? That is to say, which cubies
move where? To answer the question we
need a notation for the motions of indi-
vidual cubies. The effect of R on edges is
to carry the ur cubie around to the back
face to occupy the br cubicle. At the
same time the br cubie swings around
underneath, landing in the dr position,
the dr cubie moves up like a car on a
Ferris wheel to fill the fr cubicle and the
fr cubie comes to the top at ur. Sym-
bolically this becomes either of the fol-
lowing:

ﬂl}."\
fr br
N

ur —> br—>dr—> fr

< - -
< <<

This is called a 4-cycle, and we shall
write it in a more compact way: (ur, br.
dr, fr). Of course, it does not matter
where we start writing; we could equally
well write (br, dr, fr, ur). On the other
hand, the order of the letters in cubie
names does matter. We can reverse all
of them or none of them but not just
some of them. If you think of the letters
as designating facelets, it will become
clear. For example, if we wrote (ur, rb,
dr, rf), it would represent a 4-cycle in-
volving the same four cubicles, but one
in which each cubie flipped before mov-
ing from one cubicle to the next. Of
course, such a cycle cannot be accom-
plished by a single ¢ turn, but it may be
the result of a sequence of g turns of
different faces (an operator). Or consid-
er the following 8-cycle: (ur, uf. ul. ub, ru.
fu, lu, buw). This has length eight but in-
volves only four cubicles. Each cubie,
after making a full swing around the top.
face, comes back flipped. After two full
swings it is back as it started. Each face-
let has made a “Mébius trip.” We can
designate this “flipped 4-cycle” as (ur. uf.
ul, ub) ., where the plus sign designates
the flipping. The designation (ru. fu, lu.
bu). and numerous others would do as
well. Thus the cycle notation tells you
not only where a cubie moves but also
its orientation with respect to the other
cubies in its cycle.

To complete our description of the ef-
fect of R we must transcribe the 4-cycle
of the corners. As with edges we have
the freedom to start at any corner we
want, and once again we must be careful
to keep track of the facelets so that we
get the orientations right. Still, R has a
rather trivial effect on corners: (urf, bru.
drb, frd), which could also be written
(rub, rbd. rdf, rfu) and many other ways.
Summing up, we can write R = (ur, br,
dr, fr)(urf, bru, drb, frd). This says that R
consists of two disjoint 4-cycles. (If we




wanted to, we could throw in a term
standing for the 90-degree rotation of
the R face’s center, but since such rota-
tion is invisible, we shall not do so.)
What about transcribing a move se-
quence such as RU?Well, take a pristine
cube and perform RU. Then start with
some arbitrary cubie that has moved

' and describe its trajectory. For example,

ur has moved to br. Therefore br has
been displaced. Where has it gone? Find
the new location of that cubie (it is dr)
and continue chasing cubies around and
around the cube until you find the one
that moved into the original position of
ur. You will find the following 7-cycle:
(ur, br, dr, fr. uf, ul, ub) [see illustration on
next page).

What about corners? Well, suppose
we trace the cubie that originated in urf.
Where did RU carry it? The answer is:
nowhere; it took a round trip but got
twisted along the way. It changed into
rfu. We can designate this clockwise
twist—this quark—(ur/) .. This “twisted
unicycle™ is shorthand for the following
3-cycle: (urf rfu, fur). You can even see
this as cycling the three letters u, r and f
inside the cubie’s name. If the cycle had
been an antiquark, we would have writ-
ten (urf) . and the letters would cycle the
other way.

What about the other seven corners?
Two of them—db/ and dlf—stay put and
the other five almost form a 5-cycle: (ubr,
bdr, dfr. Iuf. bul). It is unfortunate that
the cycle does not quite close, because
bul, although it gets carried into the orig-
inal ubr cubicle, does so in a twisted
manner. It gets carried to rub, which is a
counterclockwise twist away from wubr.
This means we are dealing with a 15-cy-
cle. It is so close to the 5-cycle above,
however, that we shall just add a minus
sign to represent the counterclockwise
twist. Our twisted 5-cycle is then (ubr,
bdr, dfr. luf, bul) _, and the entire effect of
RU., expressed in cycle notation, is {(ur,
br, dr, fr. uf, ul, ub)(urf) . (ubr, bdr, dfr.
Iuf, bul) _.

Now that we have RU in cycle nota-
tion we can perform rotations mentally
by sheer calculation. What would be the
effect, for instance, of (RU)3? Edge cu-
bie ur would be carried five steps for-
ward along its cycle, which would bring
it to ul. (This can also be seen as moving
two steps backward.) Then u/ would go
to fr and so on. The 7-cycle is replaced
by a new 7-cycle: (ur, ul, fr, br, ub, uf. dr).
Let us now look at the twisted 5-cycle.
Corner cubie ubr would be carried five
steps forward along its cycle, which
brings it back to itself negatively twist-
ed, namely rub. Similarly, all the cor-
ner cubies in the 5-cycle would return
to their starting points, but negatively
twisted; thus on being raised to the fifth
power a negatively twisted 5-cycle be-
comes five antiquarks. But if that is so,
how is the requirement of integral twist
satisfied? Do we not have one quark—
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The 4-cycle (ur, uf, ul, ub) is at the left, the flipped 4-cycle (ur, uf, ul, ub) . ar the right

(urf).—and five antiquarks, and does
that not add up to four antiquarks,
which have a total twist of — 1,7 Well,
have slipped something by you here.
Can you spot it? To gain facility with the
cycle notation you might try to find the
cycle representation of various powers
of RU and UR and their inverses.

Any sequence of moves can be repre-
sented in terms of disjoint cycles of var-
ious lengths: cycles with no common
elements. If you are willing to let cy-

cles share members, however, any cycle

can be further broken up into 2-cy-
cles (called transpositions, or sometimes
swaps). For example, consider three ani-
mals: an alligator, a bobcat and a camel.
They initially occupy three ecological
niches: 4, Band C[see illustration on page
30). The effect of the 3-cycle (4, B, ) is
to put them in the order camel, alliga-
tor, bobcat. The same effect can be
achieved, however, by first performing
the swap (A, B) (what was in 4 goesto B
and vice versa) and then performing (A4,
C). Of course, this can also be achieved
by the two successive swaps (A4, C)(B, C)
and (B, C)(A4, B). On the other hand, no
sequence of three swaps will achieve the
same effect as (4, B, C). Try it yourself
and see. (Note that a niche is like a
cubicle and an animal is like a cubie.)

An elementary theorem of zoo theory
(a field we shall not go into here) states
that no matter how a given permutation
of animals among niches is reduced to a
product of successive swaps (which can
always be done) the parity of the num-
ber of such swaps is invariant, that is tg.-
say, a permutation cannot be expressed
as an even number of swaps one time and
an odd number another time. Moreover,
the parity of any permutation is the sum
of the parities of any permutations into
which it is broken up (using the rules
for the addition of even and odd num-
bers: odd plus even is odd and so forth).

Now, this theorem has repercussions
for the Magic Cube. In particular you
can see that any ¢ turn consists of two
disjoint 4-cycles (one on edges and one
on corners). What is the parity of a 4-cy-
cle? It is odd, as you can work out for
yourself. Hence after one g turn both the
edges and the corners have been per-
muted oddly, after two g turns evenly,
after three ¢ turns oddly and so forth.
The edges and corners stay in phase,
in the sense that the parities of their
permutations are identical. Now, clear-
ly the null permutation is even (zero
swaps). Thus if we have a null permuta-
tion on corners, the permutation on
edges must also be even. Conversely, a
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null permutation on edges implies an
even permutation on corners. Imagine a
state identical with Start except for two
interchanged edges (that is, one swap).
The state is even in corners but odd in
edges, hence it is impossible. The best
we could do would be to have rwo pairs
of interchanged edges. The same argu-
ment holds for corners. In short, single
swaps are impossible; swaps must al-
ways come in pairs. (This is the origin of
one of our factors of two in the calcula-
tion above of the number of states of the
cube.) There are processes for exchang-
ing two pairs of edges, two pairs of cor-
ners and even for exchanging one pair of
edges along with one pair of corners.
(This last process necessarily involves
an odd number of g turns.)

To round out the subject of con-
straints let us ponder the origin of the
constraints on corner twisting and edge
flipping. Here is a clever explanation
provided by the mathematicians John
Horton Conway, Elwyn R. Berlekamp
and Richard K. Guy, building on ideas
of Anne Scott. The basic concept is that
we want to show that the number of
flipped cubies is always even and that
the twist is always integral. In order to
determine what is flipped and what is
twisted, however, we need a frame of
reference. To supply it we shall define
two things called the “chief facelet of
a cubicle” and the “chief color of a
cubie.” (Remember that a cubicle is a
niche and a cubie is a solid object.) The
chief facelet of a cubicle will be the one
on the up or down surface of the cube, if
there is one; otherwise it will be the one
on the left or right wall [see 10p figure in
illustration on page 32). There are nine
chief facelets on U. nine on D and four
on the equator. We can forget about
centers, however, because they never
can be flipped or twisted. The chief col-
or of a cubie is defined as the color that
should be on the cubie’s chief facelet
when the cubie “comes home” to its
proper cubicle in the Start position.

[/ /f
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‘Now suppose the cube is scrambled.
Any cubie that has its chief color in the
chief facelet of its current cubicle will be
called sane; otherwise it will be called
flipped (if it is an edge cubie) or twisted
(if it is a corner cubie). Obviously there
are two ways a cubie can be twisted:
clockwise (+1/3 twist) and counter-
clockwise (— 173 twist). The “flippancy”
of a cube state will be defined as the
number of flipped edge cubies in it, and
the “twist” as the sum of the twists of the
eight corner cubies. We shall say that the
flippancy and the twist of Start are both
Zero.

Next consider the 12 possible g turns
out of which everything else is com-
pounded. Performing U or D (or their
inverses) preserves both the flippancy
and the twist, since nothing leaves or
enters the up or down face. Performing
For B (or their inverses) leaves the twist
constant, by changing the twist of four
corners at once: two by + 1/3 and two
by —1/3. It also leaves the flippancy
alone [see middle figure in illustration on
page 32]. Performing L or R will likewise
leave the twist constant (four corner
twists again cancel in pairs) and will
change the flippancy by 4, since always
four cubies will change in flippancy [see
bottom figure in illustrarion on page 32).
The conclusion is what we stated above
without proof: the eight corner cubies
are always oriented to make the total
twist a whole number, and the 12 edge
cubies must always be oriented to make
the total flippancy even.

After this discussion of constraints
you should be convinced that no mat-
ter how you twist and turn your Mag-
ic Cube you cannot reach more than 2
twelfth of the conceivable “universe,”
beginning at Start. It is another matter,
however, to show that every state within
that one-twelfth universe is accessible
from Start (or what amounts to the same
thing, only backward: that Start is acces-
sible from every state in the one-twelfth
universe). For this we need to show how
to achieve all even permutations of cu-
bies and how to achieve all orientations
that do not violate the two constraints
described above. What it comes down to
is that we have to show there are opera-
tors that will perform seven classes of
operations: (1) an arbitrary double edge-
pair swap, (2) an arbitrary double cor-
ner-pair swap, (3) an arbitrary two-edge
flip, (4) an arbitrary meson, (5) an arbi-
trary 3-cycle of edges, (6) an arbitrary 3-
cycle of corners and (7) an arbitrary
baryon.

Of course, each of these operators
should work without causing side effects
on any other parts of the cube. With
these powerful tools in our kit we would
be able to cover the one-twelfth universe
without any trouble. In the case of the
overlapping swaps of animals, I showed
that a 3-cycle is really two overlapping
2-cycles. This means that classes 5 and 6

can be made out of the first four classes,

Similarly, a baryon can be made from
two overlapping mesons. Hence all we
really need is the first four classes.

To show that all the operators belong.
ing to these four classes are available we
use another of the most crucial and love.
ly ideas of cubology: that of conjugate
elements. It turns out that all we need is
one example in each class; given one ex.
ample, we can construct all the other
operators of its class from it. How does
this work? The idea is very simple.

Suppose we had found one operator
in class 1 that swapped, say, &/ With ub
and ul with ur, leaving the rest of the
cube undisturbed [see colored arrows in
illustration on page 35). Let us call it .
Now suppose we wanted t0 swap two
entirely different pairs of edge cubies,
say rf with df and rb with dr [see black
arrows in same illustration]. One day-
dreams: “If only those cubies were in the
‘four magical swapping spots’ on the top
surface. ...” Well, why not just put them
up there? It would be fairly simple to get
four cubies into four specific cubicles.
The obvious objection is: “Yes, but that
would have an awful side effect—it
would totally mess up the rest of the
cube.” There is, however, a clever retort.
Let the destructive maneuver that gets
those four cubies into the magical swap-
ping spots be called 4. Suppose we were
smart enough to transcribe the move se-
quence of 4. Then right after perform-
ing 4 we perform our double swap H.
Now comes the clever part. Reading our
transcript in reverse order and inverting
each g turn, we perform the exact in-
verse of A. This will not only unmaneu-
ver the four cubies back into their old
cubicles but also undo the side effects 4
created. Does that restore the cube in-
tact? Not quite. Remarkably, since we
sandwiched H between A and A', the
four edge cubies go home permuted,
that is, each one winds up in the home of
its swapping partner! Otherwise the cube
is restored, and so we have accom-
plished precisely the double swap we set
out to accomplish.

When you think this through, you see
that it is flawless in conception. The in-
verse maneuver, A, does not "know" we
have exchanged two pairs of edges. As
far as it is concerned, it is merely putting
everything back where it was before 4
was executed. Hence we have “snuck”
our swaps in under 4"'s nose, which is to
say we have “fooled the cube.” Symboli-
cally, we have carried out the sequence

of moves AHA', which is called a “con-

jugate” of H.

~ Tt is this kind of marvelously con-

crete illustration of an abstract notion
of group theory that makes the Magic
Cube one of the most amazing things
ever invented for teaching mathemat-
ical ideas. Normally in group-theory
courses the examples of conjugate ele-
ments are either too trivial or too ab-
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stract to be enlightening or exciting. The
Magic Cube provides a vivid illustration
of conjugate elements and of many oth-
er important concepts of group theory.

Suppose you want to get a quark-anti-
quark pair on opposite corners but know
how to do so only on adjacent corners.
How do you do it? Here is a hint: There
are two nice solutions, but the shorter
and prettier one involves using a conju-
gate. Incidentally, any maneuver that
creates a quark on one corner (with oth-
er effects, of course) might be called a
quarkscrew.

What we have shown for edges goes
also for corners: the ability to swap two
specific corners enables you to swap any
two corners. Conjugation allows you to
build up an entire class of operators
from any single member of that class.
Of course, the question still remains:
How do you find some sample operator
in each of the four classes? For example,
how do you find an operator that creates
a meson on two adjacent corners (2
combination of a quarkscrew and an
antiquarkscrew)? How do you find an

operator that exchanges two edge pairs
both of which are on the top surface? I
shall not give the answer here but shall
follow Singmaster, who points the way
by suggesting quasi-systematic explora-
tion of some small “subuniverses” with-
in the totality of all cube states, that is,
he suggests you look at subgroups. This
means limiting your set of moves delib-
erately to some special types of move.
Here are five examples of interesting
subgroups created by various kinds of
restriction:

(1) The Slice Group. In this subgroup
every turn of one face must be accompa-
nied by the parallel move on the oppos-
ing face. Thus R must be accompanied
by L', Uby D' and F by B’. The name
comes from the fact that any such dou-
ble move is equivalent to rotating one of
the three central slices of the cube. Sing-
master abbreviates the slice move RL'
by R.. R'Lby R, and so forth. With this
restriction faces cannot get arbitrarily
scrambled. Each face will have a pattern
in which all four corners share one col-
or. A special case is the pattern called

An alligator, a bobcat and a camel (a, b, c) are permuted in their ecological niches (A, B, C)
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Dots, wherein each face is all one color 4
except for its center [see illustration on }
page 2I). Can you figure out how g
achieve Dots from Start? How many
different ways are there of arranging the
dots? How does the Dots pattern resem.
ble a meson? (Note: The reader will find
answers to all these questions, along
with much else, in Singmaster’s book,
Please do not send me answers. Send
novel ideas to Singmaster.)

(2) The Slice-squared Group. Here we
restrict the Slice Group further, allow-
ing only squares of slice moves, such as
R.2 (which is the same as R2L2) or
F2 (which is the same as F2B?).,

‘3! The Antislice Group. Here instead
of rotating opposing faces always in par-
allel we rotate them always in antiparal.
lel, so that R is accompanied by L, Fby
B and U by D. An antislice move has a
subscript a, as in R,, which equals RL,
(Of course, the Antislice-squared Group
is no different from the Slice-squared
Grqup.)

@) The Two-Faces Group. Allow
yourself to rotate only two faces, say F
and R.

/(5. The Two-Squares Group. As in the
Two-Faces Group, you may rotate only
two faces, using only 180-degree turns
at that. This is a very simple subgroup.

If you limit your attention to just the
Two-Faces and Two-Squares groups,
you will be able to find processes that
achieve double swaps, some of edges
and others of corners. It is a remarkable
fact that these processes alone, together
with the notion of conjugation, will al-
low us—in a theoretical sense—to solve
the entire unscrambling puzzle.

Why do we not also need a meson
maker and a double edge flipper? Well,
consider how we might make a double
edge flipper from the two classes of
tools one may assume will be found. In
order to flip two edges without creating
any side effects we shall perform two
successive double edge-pair swaps, and
both times they will involve the same
pairs! For example, we might swap uf
with ub and df with db and then re-
swap them. This seems to be an abso-
lute “nothing process,” but that need not
be the case. After all, just as before, we
can sandwich the second swap between
a process X and its inverse X', where
we carefully choose the process X so as
to... (Oh dear, I totally lost my train
of thought there. I am sure you can fin-
ish it up, though. I do remember that it
was not too tricky, and that I thought
the idea was elegant. I am sure you
will too.)

The same kind of thinking will show
how you can build up a meson maker
out of mere corner-swapping processes
and conjugation. Given mesons you can
build up baryons. And with mesons and
baryons, double edge flippers and dou-
ble edge-pair swappers and double cor-
ner-pair swappers you have a full set of




tools with which to restore any scram-
bled cube to Start, as long as it belongs
to the same orbit as Start. This is, need-
less to say, a highly theoretical existence
proof, and any practical set of routines
would be organized quite differently.
The type of solution we have described
has the advantage of being compact in
description, but it is enormously ineffi-
cient. In practice a cube solver must de-
velop a fairly large and versatile set of
routines that are short, easy to memo-
rize and highly redundant. There is an
advantage to being able to carry out re-
quired transformations in a variety of

ways: one can choose whichever tool
seems best adapted to the situation at
hand, instead of, for instance, using
some theoretical tool that can make a
baryon in several hundred g turns.

The typical solver evolves a set of
transforms partly by intuition, partly
by luck, sometimes with the aid of di-
agrams and occasionally with abstract
principles of group theory. One princi-
ple nearly everyone formulates quite
early is that of “‘getting things out of the
way."” This is once again the idea of con-
jugates, only in a simpler guise. The typ-
ical patter that goes along with it is

The cube is in the Start position. The chief
tacelets of the cubicles are shown by the
black X's and the chief colors of cubies by
the colored O’s. (The centers can be ignored,
since they are stationary.) Think of the X's
as floating in space and the O's as being
attached to the cube, so that when the faces
turn, the X's stay where they are but the O's
move.

The g turn F has been executed. The two
empty colored circles indicate that those two
facelets have lost their “sanity.” For them to
be returned to sanity one would have to be
twisted one-third clockwise and the other one-
third counterclockwise. The same thing has
happened on the invisible left-hand face.

The g turn R has been executed from the
Start position. Empty circles oceur in pairs.
The top and bottom corner yellows have can-
celing twists. The blue edges from a pair, and
the yellow edge is paired with a flipped edge
on the invisible back face.

hw]thuﬁippauqismandmh‘itiuugml

something like this (I have included
sound effects of a sort): “Let's see, I'||
swing this out of the way [flip, flip] so
that I can move thar [flap, flap, flap], and
now I can swing zhis back again [unflip,
unflip]. There—now I've got that Where |
wanted it to be.” You can hear the con-
jugate structure inside the patter.

The only problem with being con.
scious of why it all works as you carry jt
out is that it may be too taxing. My im-
pression is that most cubemeisters do
not think in such detail about how their
tools are achieving their goals, at least
not while they are in the midst of re.
storing some scrambled cube. Rather,
expert cube solvers are like piano vir-
tuosos who have memorized difficult
pieces. As one M.LT. cubemeister said
to me, “I have forgotten how to solve
the cube, but my fingers remember.”

The average operator seems 1o be
about 10 to 20 g turns long. You do not
ever want to get lost in mid-operator,
because if you do, you will have a totally
scrambled cube on your hands, even if
you were carrying out your final trans-
form. As cubemeister Bernie Green-
berg, who with Dave Christman is re-
sponsible for the beautiful computer
graphics of the cube on the cover of this
issue, said to me once, “If I were solving
a cube and somebody velled ‘Fire!" I
would finish my transform before clear-
ing out.”

My own style is probably overly
blind. Not only do I not think about why
my operators work as I am carrying
them out; 1 must also admit that with
some of them 1 have not the foggiest
idea why they work at all. I found these
“magic operators” through a long and
arduous trial-and-error procedure. 1
used some heuristic approaches: “Ex-
plore various powers of simple se-
quences,” “Use conjugates a lot” and so
on. One thing I hardly used at all—alas,
poor Rubik—was three-dimensional Vvi-
sualization. I do, however, know one
Stanford cubemeister, Jim McDonald,
who can give the reason for every g turn
he makes. His operators do not seem
magic to him because he can see what
they are doing at every moment along
the way. In fact, he does not have them
memorized as [ do mine; he seems to
reconstruct them as he unscrambles
cubes, relying on his “cube sense.” He is
like an expert musician who can impro-
vise where a novice must memorize. For
interested readers the central idea of
Jim’s method is first to solve the top lay-
er, minus one corner, and then to let a
vertical column of three cubicles act in
the manner of a driveway one uses as an
aid in turning a car around. The other
two layers are cleaned up by shunting
cubies in and out of the “driveway.”

Perhaps not coincidentally, the ab-
stract approach has been carried to~
its extreme by Singmaster’s officemate
Morwen B. Thistlethwaite (I am not jok-




ing)., who currently holds the world rec-
ord for the shortest unscrambling al-
gorithm. It requires at most 52 *“turns.”
(A turn is either a g turn or a half turn,
that is, a 180-degree turn of one face)
Thistlethwaite has used ideas of group
theory to guide a computer search for
special kinds of transforms. His algo-
rithm has the property of not seeming
to converge toward the solved state at
all—until the last few turns.

This must be contrasted with the more
conventional style. Most algorithms be-
gin by getting one layer, say the top lay-
er, entirely correct. (In saying “top lay-
er” rather than “top surface™ | mean
that the “fringe™ has to be right, too: the
cubies on top must be correct as seen
from the side as well as from above.)
This represents the first in a series of
-plateau states.” Although further prog-
ress requires any plateau state’s destruc-
tion, that state will later be restored, and
each time this happens more order will
have been introduced. These are the suc-
cessive plateau states.

After getting the top layer the solver
typically works on corners on the bot-
tom layer, or perhaps on getting the hor-
izontal equator slice all fixed up. Most
algorithms can, in fact, be broken up
into about five natural stages, corre-
sponding to natural classes of cubies
that get returned to their home cubicles.
My personal algorithm, for instance,
goes through the following five stages:
top edges, top corners, bottom corners,
equator edges and bottom edges. In the
first two of my stages placement and ori-
entation are achieved simultaneously.
Each of the last three stages breaks up
into a placement phase and then an ori-
entation phase. Naturally the operators
of any stage must respect all the accom-
plishments of preceding stages. This
means they can damage the order built
up as long as they then repair it. They
are welcome, however, to indiscrimi-
nately jumble up cubies scheduled to be
dealt with in later stages. I find that other
people’s algorithms are usually based on
the same classes of cubies, but the order
of the stages can be wildly different.

Virtually all algorithms have the
property that if one were to take a series
of snapshots of a cube at the plateau
states, one would see entire groups of
cubies falling into place in patterns. This
is called monotonicity at the operator
level, that is, a steady, visible approach
toward Start, with no backtracking. Of
course, there is backtracking at the rurn
level, but that is another matter.

Very different in spirit is Thistle-
thwaite’s algorithm. Instead of trying to
put particular classes of cubies into their
cubicles he makes a “descent through
nested subgroups.” This means that
starting with total freedom he makes a
few moves, then clamps down on the
types of move that will thenceforward
be allowed, makes a few more moves,

clamps down a bit more and so on until
the constraints become so heavy that
nothing can move any more. Just at this
point, however, the Start position has
been achieved! Each time, the clamping
down amounts to forbidding g turns on
two opposite faces, allowing only hailf
turns thenceforward in their stead. The
first faces to be thus “clamped™ are U
and D. then come Fand Band finally L
and R. The strange thing about this ap-
proach is that you cannot see Start get-
ling nearer, even if you take a series of
snapshots at carefully chosen moments.
All of a sudden there it is.

This raises a natural question. Is there
any easy way to tell how far you are

from Start? It could obviously be quite

useful. For example, it is rather embar-
rassing if one has to resort to the full
power of a general unscrambling algo-
rithm to undo what some friend has
done with four or five casual twists. For
that reason alone it would be nice to be
able to assess quickly if some state is
“really random" or is close to Start. But
what does “close” mean? Distance be-
tween two states in this vast space can be
measured in two fairly natural ways.
You can count either the number of ¢
turns or the number of turns needed to
get from one state to the other (where
“turn.,” as above, means either a g turn
or a half turn). But how can one figure
out how many turns are needed to get
to Start without doing an exhaustive
search? A reliable and at least fairly ac-
curate estimate would be preferable,
one that could be carried out quickly
during a cursory inspection of the cube
state. A naive suggestion is to count the
number of cubies that are not in their
home cubicle. This estimator, however,
can be totally fooled by the Dots posi-
tion, in which nearly all cubies are on
the “wrong” side. That position is only
eight g turns away from Start. Perhaps
the flippancy and the number of quarks
could also be taken into account by
a better estimator, but I do not know
of one.

There are sophisticated group-theo-
retical arguments estimating that the
farthest one can get from Start is 22 or
23 turns. This is quite amazing, consid-
ering that most solvers’ early algorithms
take several hundred turns, and high-
ly polished algorithms take a number
somewhere in the 80’s or 90’s. Indeed,
many mere operators take considerably
more turns than Thistlethwaite’s entire
algorithm does. (My first double edge
fiipper was nearly 60 turns long.)

One thing we know, and it can be
demonstrated easily, is that there exist
states at least 17 turns away from Start.
The argument goes as follows. At the
outset there are 18 possible turns we
might make: L, L', L% R, R', R* and so
on. After that there are 15 reasonable
turns to make. (One would not move the
same face again.) The number of dis-

How to swap arbitrary edge pairs

tinct turn sequences of length 2 is there-
fore 18 X 13, or 270. Another turn will
add another factor of 15, and so on.
How long does it take before we have
reached the number of accessible states?
It turns out that 17 turns will create
more turn sequences than there are dis-
tinct states, and that 16 turns are. too
few. Now, not every turn sequence leads
to a distinct state, not by a long shot, and
so we have not shown that 17 turns will
reach every accessible state. We have
simply shown that af leasr 17 turns are
needed if you want to reach every state
from Start. Hence conceivably no two
states are much more than 17 turns
away from each other. But which 17
turns? That is the question.

So far only God knows how to get
from one state of the Magic Cube to
another in the fewest turns. “God’s algo-
rithm” is the one that would tell you
how to do it. A burning question of cu-
bology is: Is God's algorithm just a gi-
gantic table without any pattern in it, or
is there a significant amount of pattern .
to it, so that an elegant and short algo®
rithm based on it could be mastered by a
mere mortal?

If God were to enter a cube-solving
contest, he might encounter some rather
stiff competition from a few prodigious
mortals, even if they do not know his
algorithm. 1 am told there is a young
Englishman from Nottingham named
Nicholas Hammond who has got his av-
erage solving time down to close to 30
seconds! Such a phenomenal perform-
ance calls for several skills. The first is
a deep understanding of the cube. The
second is an extremely polished set of
operators. The third is to have the oper-
ators down so cold that you could do
them in your sleep. The fourth is sheer
speed at executing twisty hand motions.
The fifth is having a well-oiled “rac-
ing cube”: one that turns at the merest
twitch of a finger, eagerly anticipating
every operator before it is needed. In
short, the racing cube is a cube that
wants 10 win,

I have not heard of people naming
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their racing cubes, although it is sure to
come. It would seem, however, that
there is an association between color-
ful names and major contributors to
cubology. Apart from Singmaster and
Thistlethwaite there is Dame Kathleen
Ollerenshaw (recently Lord Mayor of
Manchester), who has discovered many
streamlined processes, has written an ar-
ticle on the Magic Cube and has the dis-
tinction of being the first to report an
attack of cubist’s thumb, a grave form
of the disease mentioned at the begin-
ning of this column. Then there is Oliver
Pretzel, the discoverer of a delicious
twisted 3-cycle and the creator of a love-
. |y “‘pretty pattern” called the 6- U state,
which can be reached from the start po-
sition by way of the word L'RZF'L’
B'UBLFRU'RLR,F,U.R,.

Pretty patterns are of interést to many
cube lovers, but I cannot do them jus-
tice here. I shall mention only a few
of the best. My favorite is the Worm,
whose “‘genotype,” or turn sequence, is
RUF2D'R.F.D'F'R' F2RU2FRF'R'U'
F'U2FR. Then there is the Snake, a sim-
ilar sinuous pattern that winds around
the cube: BR,D'RZDR/B'RIUB2U'D
R2D’. If you cut off the Snake's tail R2
D' and stick on instead B2R,UZR,'B?
D', you will create a curious bi-ringed
pattern. All of these are from pretty-
pattern-meister Richard Walker.

A beautiful pattern is the Giant Mes-
s on, made from a giant quark (a2 X 2 X
: 2 corner subcube rotated 120 degrees)
and a giant antiquark. To top it off you
can use quarkscrews to twist a standard-
size quark and an antiquark onto the
corners of the giant quark and anti-
quark, like cherries on top of sundaes
[see illustration on page 21]. 1 shall let you
figure this one out. A good warm-up ex-
ercise is to figure out how to make the
Pons Asinorum (Bridge of Asses) state
[see same illustration], so called because,
as one M.LT. cubemeister remarked to
me, “If you can't hack this one, forget
about cubing.” Then there are two kinds
of cross, known to the M.LT. cube-hack-
ing community as the Christman cross
and the Plummer cross [see same illus-
tration]. The Christman cross involves
three pairs of colors (U-D, F-R and L-B
in the illustration); the Plummer cross

The Magic Domino in a scrambled state

involves two triples in the quark-anti-
quark style.

I should like to leave the reader with a
set of hints and some things to think
about. A difficult challenge, good for
cubists at all levels of cubistry, is for
someone to do a handful of turns on a
pristine cube, for him to give it to you in
this mildly scrambled state and for you
to try to get it back to the Start position
by finding the exact inverse word. Cube-
meisters will be able to invert a bigger
handful of turns than novices. Appar-
ently Kate Fried can invert seven turns
regularly, and once after a full day of
staring at the cube she undid 10. (I can
undo about four.)

My royal road to discovering an algo-
rithm is based on two challenging ex-
ercises involving corner cubies only.
The preliminary exercise is as follows.
Maneuver the four corner cubies with
white on them to the top face with their
white facelets pointing upward. Do not
worry about which cubie is in which
cubicle. Simultaneously do the same
thing on the bottom face (of course
with its color pointing downward). The
advanced exercise is to do the preced-
ing one but in addition to make sure that
all the corner cubies are in their proper
cubicles. This amounts to solving the
2 X 2 X2 Magic Cube puzzle, and it
will take you a long way toward mastery
of the Magic Cube.

To help you with your edge processes,
here is a wonderful trick discovered by
David Seal, based on a type of operator
called a monoflip. I shall give it to you as
a puzzle. How can you make a double
edge flipper out of a process that messes
up the lower two layers but leaves the
top layer invariant except for flipping
a single edge cubie? | shall give you a
hint: The answer involves the important
group-theoretical idea of a commutator,
a word of the form PQP'(Q". 1 shall also
leave it to you to find your own monoflip
operator. After I found out about it I
incorporated the trick into my method.

Here is a small riddle: Why do 5- and
7-cycles crop up so often in an object
whose symmetries all have to do with
numbers such as 3, 4, 6 and 8? Where
do cycle lengths such as 5 and 7 come
from? A somewhat related question is:
What is the maximum order a word can
have? The order of a word is the power
you have to raise it to in order to get the
identity. (For example, the order of R is
4.) You can show that the order of RU,
for instance, is 105 by inspecting its
cycle structure. *

Where do we go from here? I must
mention that I have only scratched the
surface of cubology in this column. Ru-
bik and others are working on generali-
zations of various types. There already
is a Magic Domino, which is like two-
thirds of a magic cube: two 3 X 3 layers.
You can rotate it only by half turns
about two of its three axes and by g turns
about the third axis. In its Start posi-

tion one face is black, the other is white
and both faces have numbers from
1 through 9 in order. It resembles the
15 Puzzle even more strongly than the
cube does. Various people have made
2 X 2 X 2 cubes, and such cubes may go
on sale one day. You can make your
own by gluing little three-cornered hats
over each of the eight corners of a
3 X 3 X 3 cube. Readers will naturally
wonder about such enticing possibilities
as a 4 X 4 X 4 cube. Rest assured, it is
being developed in the Netherlands, and
it may be ready soon. Inevitably there is
the question of both higher and lower
dimensionalities. Cube theorists are be-
ginning to discuss the properties of high-
er-dimensional cubes.

The potential of the 3 X 3 X 3 cube is
not close to being exhausted. One rich
area of unexplored terrain is that of al-
ternate colorings. This idea was men-
tioned to me by various M.LT. cube
hackers. One can color the cubies in a
variety of ways. Each new coloring
presents a different kind of unscram-
bling problem. In one variant coloring,
edge-cubie orientations become irrele-
vant and center-cubie orientations take
on a vital importance. In another vari-
ant, corner-cubie orientations are irrele-
vant and centers matter. Then, moving
toward simplicity, one can color two
faces the same, thereby reducing the
number of distinct colors by one. Or one
can paint the faces with just three colors.
An extreme would be to have three blue
faces meet at one corner and three white
ones meet at the corner diagonally op-
posite. The French government official I
mentioned above says that on the cubes
he saw, five faces had one color and the
sixth face had another color!

Who knows where it will all end?
As Bernie Greenberg has pointed out:
“Cubism requires the would-be cubist
to literally invent a science. Each solver
must suggest areas of research to him-
self or herself, design experiments, find
principles, build theories, reject them
and so forth. It is the only puzzle that
requires its solver to build a whole sci-
ence.” Could Rubik and Ishige have
dreamed that their invention would lead
to a model and a metaphor for all that is
profound and beautiful in science? It is
an amazing thing, this Magic Cube.

I should like to thank the many cube-
meisters and cubists who have contrib-
uted directly or indirectly to my knowl-
edge and enthusiasm. Among them are
Clark Baker, Alan Bawden, Jim Boyce,
Larry Breed, Charles Brenner, Bob Fil-
man, Carl Hoffman, Scott Kim, Bill
McKeeman, Jeannine Moseley, Rich-
ard Pavelle, Dave Plummer, David Pol-
icansky, David Singmaster, Ann Trail,
Allen Wechsler, Dan Weise and John
Woodcock. My warmest thanks, how-
ever, are reserved for Greenberg, who
set up a cube-in for my benefit at M.L.T.
and who infected me with his enthu-
siasm for the beauties of cubology.
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