5 Problems: {20,20,30,20,20} points = 110 total 4 pages including equation sheet (on page 4)

 $x''[t] + 2\beta x'[t] + \omega_0^2 x[t] == Q_0 Exp[i\omega_D t]$

Problem 1: (20 Pts) Given the above notation, examine the figure below, and provide as much detail as possible about what parameters were used to generate the plots below. I want to know about the initial conditions, the relative size of the pieces, and any other information you can glean from the plot. (*Hint: the first two plots have many parameters in common.*)

Figure 1: Hint: One of these curves is critically damped.

2a) (20 Points) Consider the system of 3 masses shown in the figure. Write down the system of equations needed to solve for the tensions and accelerations $\{T_1, T_2, a_1, a_2, \alpha_3\}$,

but **DO NOT SOLVE THEM.** Assume mass m_3 has $I_3=(1/2)m_3 r^2$.

Be sure to identify equations clearly; if I can't understand your notation or writing, no credit. Note, the ramp has friction with coefficient μ .

3) (30 Pts) Consider a mass m with initial velocity v_0 in a gravitational field g and has linear air resistance (b v). Hint: be sure to show work; no work, no points.

- a) Solve for the terminal velocity v_{T} .
- b) Solve for the velocity v(t) in general.

Sketch a plot of v(t) for the following cases of initial velocity v_0 : [Hint: Make your plots clear enough so I can see the key points. Think about what I'm looking for.]

- c) The objects starts with $v_0=0$.
- d) The objects starts with $v_0 < v_T$.
- e) The objects starts with $v_0 > v_T$.

f) Consider a mass m with initial velocity v_0 in a gravitational field g that has quadratic air resistance (c v^2). Solve for the terminal velocity v_T . [Hint: I don't need a full solution, just the terminal velocity.] 4) (20 Pts) Evaluate the work done by the two-dimensional force $F=\{2x-y, x+3y\}$ along paths $\{a,b\}$ from point $P=\{1,0\}$ to point $Q=\{0,1\}$. [Watch your integration limits!]

a) Path "a" goes via the origin. [P,O,Q]

b) Path "b" is given parametrically as $x=(1-t)^2$, $y=t^3$ as $t=\{0,1\}$.

c) Could this be a conservative force? Why?

5) (20 Pts) You are on Planet Hollywood of mass $m=7.35 \times 10^{22}$ Kg and radius $r=1.74 \times 10^{6}$ m. By coincidence, this happens to rotate once every 24 hours. Recall G=6.67×10⁻¹¹ m³/kg/s².

a) Compute the gravitational acceleration "g" on the surface and compare to the earth (g=9.8).

b) Compute the gravitational potential energy U_G of a cannon ball on the surface of the planet that weights 1Kg.

c) You throw a cannonball from the surface and you want it to escape the gravitational pull. How fast do you need to throw it? [Assume there is NO air resistance.] That is, compute the escape velocity from the surface of Planet Hollywood. Hint: use U_G from the previous step, and remember that for it to escape it cannot have negative total energy.

d) You want to launch a satellite in orbit around Planet Hollywood so that it remains at a fixed point above the equator; this means it revolves around Planet Hollywood once every 24 hours. What is the orbital radius "r" needed.

Hint, use Newton's gravitational formula, NOT mg!

ADVANCED PLACEMENT PHYSICS 1 EQUATIONS, EFFECTIVE 2015

MECHANICS		ELECTRICITY	
$v_x = v_{x0} + a_x t$	a = acceleration A = amplitude	$\left \vec{F}_{E}\right = k \left \frac{q_{1}q_{2}}{r^{2}}\right $	A = area F = force
$x = x_0 + v_{x0}t + \frac{1}{2}a_xt^2$	d = distance E = energy f = frequency	$I = \frac{\Delta q}{\Delta t}$	I = current $\ell = \text{length}$ P = power
$v_x^2 = v_{x0}^2 + 2a_x(x - x_0)$	J = force L = rotational inertia	$R = \frac{\rho \ell}{\Lambda}$	q = charge R = resistance
$\vec{a} = \frac{\sum F}{m} = \frac{F_{net}}{m}$	K = kinetic energy k = spring constant	$I = \frac{\Delta V}{P}$	r = resistance r = separation t = time
$\left \vec{F}_{f}\right \leq \mu \left \vec{F}_{n}\right $	L = angular momentum $\ell = $ length	$P = I \Delta V$	V = electric potential $\rho =$ resistivity
$a_c = \frac{v^2}{r}$	m = mass P = power	$R_s = \sum_i R_i$	
$\vec{p} = m\vec{v}$	p = momentum r = radius or separation	$\frac{1}{R_p} = \sum_i \frac{1}{R_i}$	
$\Delta \vec{p} = \vec{F} \Delta t$	T = period t = time		
$K = \frac{1}{2}mv^2$	U = potential energy V = volume v = speed	WAVES	
$\Delta E = W = F_{\parallel}d = Fd\cos\theta$	W = specu W = work done on a system x = position	$\lambda = \frac{v}{f} \qquad \begin{array}{c} f = \text{ frequency} \\ v = \text{ speed} \end{array}$	
$P = \frac{\Delta E}{\Delta t}$	y = height $\alpha = \text{angular acceleration}$	GEOMETRY AND TRIGONOMETRY	
$\theta = \theta_0 + \omega_0 t + \frac{1}{2}\alpha t^2$	μ = coefficient of friction θ = angle	Rectangle $A = bh$	A = area C = circumference
$\omega = \omega_0 + \alpha t$	$\rho = \text{density}$ $\tau = \text{torque}$	Triangle	V = volume S = surface area
$x = A\cos(2\pi ft)$	ω = angular speed	$A = \frac{1}{2}bh$	b = base h = height
$\vec{\alpha} = \frac{\sum \vec{t}}{I} = \frac{\vec{\tau}_{net}}{I}$	$\Delta U_g = mg \Delta y$	Circle $A = \pi r^2$	ℓ = length w = width
$\tau = r_{\perp}F = rF\sin\theta$	$T = \frac{2\pi}{m} = \frac{1}{f}$	$\begin{array}{l} A = \pi r \\ C = 2\pi r \end{array}$	r = radius
$L = I\omega$ $\Delta L = \tau \Delta t$	$T_{c} = 2\pi \sqrt{\frac{m}{2}}$	Rectangular solid $V = \ell w h$	Right triangle $c^2 = a^2 + b^2$
$K = \frac{1}{2}I\omega^2$	$T = 2\pi \frac{\ell}{k}$	Cylinder $V = \pi r^2 \ell$	$\sin\theta = \frac{a}{c}$
$\left \vec{F}_{s} \right = k \left \vec{x} \right $	$f_p = 2\pi \sqrt{g}$	$S = 2\pi r\ell + 2\pi r^2$	$\cos\theta = \frac{b}{c}$
$U_s = \frac{1}{2}kx^2$	$ F_g = G \frac{m_1 m_2}{r^2}$	Sphere	$\tan \theta = \frac{a}{b}$
$ \rho = \frac{m}{V} $	$\vec{g} = \frac{\vec{F}_g}{m}$	$V = \frac{1}{3}\pi r^{3}$ $S = 4\pi r^{2}$	$\frac{c}{\theta - 90^{\circ}}a$
	$U_G = -\frac{Gm_1m_2}{r}$		U