
Homework #3: Phys 3344: Prof. Olness Fall 2020

Due 9 September2020

1) Using Newton's universal law of gravitation, show that Kepler's 2nd and 3rd laws follow.

- For the 2^{nd} law, use the fact that Newton's gravitation force is radial, so has no torque.
- For the 3rd law, I suggest you relate T and r for a circular orbit to demonstrate the relation.

2) Putty & Disk: A ball of putty of mass m_1 with velocity v_1 sticks to a cylindrical turntable $[I=(1/2) m_2 r^2]$ which is initially at rest. Assume the impact is perpendicular to the turntable axis and it strikes at the radius r. Find the final angular velocity ω of the putty+turntable system.

3) Consider the figure at right. The pulley is friction-less, but has mass m_2 and moment of inertia $I=(1/2)m_2r^2$. The block has mass m1, and slides on a friction-less surface with angle α .

Compute 1) the acceleration a of mass m1, 2) the angular acceleration α of the pulley, 3) the tension T in the string.

4)

4.3 ****** Do the same as in Problem 4.2, but for the force $\mathbf{F} = (-y, x)$ and for the three paths joining P and Q shown in Figure 4.24(b) and defined as follows: (a) This path goes straight from P = (1, 0) to the origin and then straight to Q = (0, 1). (b) This is a straight line from P to Q. (Write y as a function of x and rewrite the integral as an integral over x.) (c) This is a quarter-circle centered on the origin. (Write x and y in polar coordinates and rewrite the integral as an integral over ϕ .)

- 5) Using Newton's gravitational formula, $F=GMm/r^2$, compute the acceleration "g" at:
 - a) the surface of the earth,
 - b) for astronauts in orbit (about 100 miles above the surface)
 - c) at the distance of the moon.
 - d) Using a=g, compute how long it would take a cannon ball to fall to earth.
 - e) OPTIONAL: Repeat part d), but use the correct formula for "a" based on Newton's gravitational formula.

FYI, you might find this of interest: Pages 219-224 of the text (pages 123-126 of the PDF):

Galileo pokes fun at a contemporary philosopher for calculating the time it takes a cannon ball to fall to Earth from rest starting from a distance of the Moon's orbital radius, more than six days. Galileo shows how to perform the calculation "correctly," but Galileo uses a constant 9.8 m/s^2 acceleration for the whole trip. The real answer, which your students can verify, is a few days. Of course, the philosopher's answer is only accidentally close to the right one; the method is nonsense.