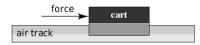
A constant force is exerted on a cart that is initially at rest on an air track. Friction between the cart and the track is negligible. The force acts for a short time interval and gives the cart a certain final speed.



To reach the same final speed with a force that is only half as big, the force must be exerted on the cart for a time interval

- 1. four times as long as
- 2. twice as long as
- 3. equal to
- 4. half as long as
- 5. a quarter of


that for the stronger force.

A constant force is exerted for a short time interval on a cart that is initially at rest on an air track. This force gives the cart a certain final speed. Suppose we repeat the experiment but, instead of starting from rest, the cart is already moving with constant speed in the direction of the force at the moment we begin to apply the force. A fter we exert the same constant force for the same short time interval, the increase in the cart's speed



- 1. is equal to two times its initial speed.
- 2. is equal to the square of its initial speed.
- 3. is equal to four times its initial speed.
- 4. is the same as when it started from rest.
- 5. cannot be determined from the information provided.

A constant force is exerted for a short time interval on a cart that is initially at rest on an air track. This force gives the cart a certain final speed. The same force is exerted for the same length of time on another cart, also initially at rest, that has twice the mass of the first one. The final speed of the heavier cart is



- 1. one-fourth
- 2. four times
- 3. half
- 4. double
- 5. the same as

that of the lighter cart.

A cart moving at speed v collides with an identical stationary cart on an airtrack, and the two stick together after the collision. What is their velocity after colliding?

- 1. v
- 2. 0.5 v
- 3. zero
- 4. -0.5 v
- 5. −*v*
- 6. need more information