Phys 3344: Office Hours: Wed 5:00-6:00 Phone #'s sheet Schedule: Exam #1: Thur/Friday 17-18 Sept Homework #2: Homework #3: **Atwood Machine:** No pulley With pulley **Divergence Theorem** Line Integrals

	2020 FALL PHYS 3344				
#	DAY	LECTURE:	NOTES:	Chpt	TOPIC
1	TUE	08/25/20	First Class	1	Newtons Laws
2	THUR	08/27/20		2	Projectiles
3	TUE	09/01/20		3	Momentum & Angular Momentum
4	THUR	09/03/20		4	Energy
5	TUE	09/08/20		5	Oscillations
6	THUR	09/10/20			
7	TUE	09/15/20			
8	THUR	09/17/20			EXAM 1
9	TUE	09/22/20		6	Calculus of Variations
10	THUR	09/24/20		7	Lagrange's Equation
11	TUE	09/29/20			
12	THUR	10/01/20		8	Two Body Problems
13	TUE	10/06/20			
14	THUR	10/08/20		9	Non-Inertial Frames
	TUE	10/13/20	Fall Break		
15	THUR	10/15/20		10	Rotational Motion
16	TUE	10/20/20			EXAM 2
17	THUR	10/22/20			
18	TUE	10/27/20		10	Rotational Motion
19	THUR	10/29/20			
20	TUE	11/03/20		11	Coupled Oscillations
21	THUR	11/05/20			
22	TUE	11/10/20		13	Hamiltonian Mechanics
23	THUR	11/12/20			
24	TUE	11/17/20			
25	THUR	11/19/20		14	Collision Theory
26	TUE	11/24/20			
27	THUR	11/26/20	Thanksgiving		
28	TUE	12/01/20		15	Special relativity
29	THUR	12/03/20	Last Class		Review
	WED	Dec 16	FINAL EXAM	Wedr	esday Dec. 16,2020, 11:30am

Divergence theorem. In two dimensions, it is equivalent to Green's theorem

$$\int_{V} \partial F = \int_{\partial V} F$$

 $\cdot \mathbf{F}) \ dV = \oint_{C} (\mathbf{F} \cdot \mathbf{n}) \ dS.$

volume integral

$$\iiint_V (\nabla$$

000

NameIntegral equationsDifferential equationsGauss's law
$$surface$$

integral $\iint_{\partial\Omega} \mathbf{E} \cdot d\mathbf{S} = 4\pi \iiint_{\Omega} \rho \, dV$ $volume$
integral $\nabla \cdot \mathbf{E} = 4\pi \rho$ Gauss's law for magnetism $\iint_{\partial\Omega} \mathbf{B} \cdot d\mathbf{S} = 0$ $\nabla \cdot \mathbf{B} = 0$ Maxwell–Faraday equation
(Faraday's law of induction) $\oint_{\partial\Sigma} \mathbf{E} \cdot d\boldsymbol{\ell} = -\frac{1}{c} \frac{d}{dt} \iint_{\Sigma} \mathbf{B} \cdot d\mathbf{S}$ $\nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}$ Ampère's circuital law (with
Maxwell's addition) $\oint_{\partial\Sigma} \mathbf{B} \cdot d\boldsymbol{\ell} = \frac{1}{c} \left(4\pi \iint_{\Sigma} \mathbf{J} \cdot d\mathbf{S} + \frac{d}{dt} \iint_{\Sigma} \mathbf{E} \cdot d\mathbf{S} \right)$ $\nabla \times \mathbf{B} = \frac{1}{c} \left(4\pi \mathbf{J} + \frac{\partial \mathbf{E}}{\partial t} \right)$

Conservative Forces: if $F=-\nabla U$

$$F = -\nabla U \qquad \int_{a}^{b} F = \int_{a}^{b} -\nabla U = -U_{b} + U_{a} = \Delta U_{ab}$$
 Independent of path

Contents

Preface xi

PARTI Essentials 1

CHAPTER 1 Newton's Laws of Motion 3

- 1.1 Classical Mechanics 3
- 1.2 Space and Time 4
- 1.3 Mass and Force 9
- 1.4 Newton's First and Second Laws; Inertial Frames 13
- 1.5 The Third Law and Conservation of Momentum 17
- 1.6 Newton's Second Law in Cartesian Coordinates 23
- 1.7 Two-Dimensional Polar Coordinates 26
 Principal Definitions and Equations of Chapter 1 33
 Problems for Chapter 1 34

CHAPTER 2 Projectiles and Charged Particles 43

- 2.1 Air Resistance 43
- 2.2 Linear Air Resistance 46
- 2.3 Trajectory and Range in a Linear Medium 54
- 2.4 Quadratic Air Resistance 57
- 2.5 Motion of a Charge in a Uniform Magnetic Field 65
- 2.6 Complex Exponentials 68
- 2.7 Solution for the Charge in a B Field 70
 Principal Definitions and Equations of Chapter 2 71
 Problems for Chapter 2 72

vi Contents

CHAPTER 3 Momentum and Angular Momentum 83

- 3.1 Conservation of Momentum 83
- 3.2 Rockets 85
- 3.3 The Center of Mass 87
- 3.4 Angular Momentum for a Single Particle 90
- 3.5 Angular Momentum for Several Particles 93
 Principal Definitions and Equations of Chapter 3 98
 Problems for Chapter 3 99

CHAPTER 4 Energy 105

- 4.1 Kinetic Energy and Work 105
- 4.2 Potential Energy and Conservative Forces 109
- 4.3 Force as the Gradient of Potential Energy 116
- 4.4 The Second Condition that F be Conservative 118
- 4.5 Time-Dependent Potential Energy 121
- 4.6 Energy for Linear One-Dimensional Systems 123
- 4.7 Curvilinear One-Dimensional Systems 129
- 4.8 Central Forces 133
- 4.9 Energy of Interaction of Two Particles 138
- 4.10 The Energy of a Multiparticle System 144
 Principal Definitions and Equations of Chapter 4 148
 Problems for Chapter 4 150

CHAPTER 5 Oscillations 161

- 5.1 Hooke's Law 161
- 5.2 Simple Harmonic Motion 163
- 5.3 Two-Dimensional Oscillators 170
- 5.4 Damped Oscillations 173
- 5.5 Driven Damped Oscillations 179
- 5.6 Resonance 187
- 5.7 Fourier Series* 192
- 5.8 Fourier Series Solution for the Driven Oscillator* 197
- 5.9 The RMS Displacement; Parseval's Theorem* 203
 Principal Definitions and Equations of Chapter 5 205
 Problems for Chapter 5 207

۷

F = m a F_T - m₁ g = m₁ a₁ F_T - m₂ g = m₂ a₂ a₁ = - a₂ Unknowns: F_T, a₁, a₂

Figure 4.15 An Atwood machine consisting of two masses, m_1 and m_2 , suspended by a massless inextensible string that passes over a massless, frictionless pulley. Because the string's length is fixed, the position of the whole system is specified by the distance x of m_1 below any convenient fixed level. The forces on the two masses are their weights m_1g and m_2g , and the tension forces F_T (which are equal since the pulley and string are massless).