Phys 3344: Thursday 24 September

Office Hours: Wed 5:00-6:00

Schedule:

Exam #1: on video

Homework #6:

Fourier Transforms

Ch 6 & 7

brachistochrone problem

Lagrange equations

֡	DAY	LECTURE:	NOTES:	Chpt	TOPIC
- 10	TUE	08/25/20		1	Newtons Laws
-	THUR	08/27/20		2	Projectiles
	TUE	09/01/20		3	Momentum & Angular Momentum
4	THUR	09/03/20		4	Energy
5	TUE	09/08/20		5	Oscillations
6	THUR	09/10/20			
7	TUE	09/15/20			
8	THUR	09/17/20			EXAM 1
9	TUE	09/22/20		6	Calculus of Variations
10	THUR	09/24/20		7	Lagrange's Equation
11	TUE	09/29/20			
12	THUR	10/01/20		8	Two Body Problems
13	TUE	10/06/20			
14	THUR	10/08/20	- 1000	9	Non-Inertial Frames
- 0	TUE	10/13/20	Fall Break	10	Rotational Motion
15	THUR	10/15/20	Sa		EXAM 2
	TUE	10/20/20	54	10	Rotational Motion
_	THUR	10/22/20	5-		
_	TUE	10/27/20	1-1	11	Coupled Oscillations
_	THUR	10/29/20	5-5		
_	TUE	11/03/20	55	13	Hamiltonian Mechanics
	THUR	11/05/20	Drop Date		
	TUE	11/10/20			
	THUR	11/12/20		-	EXAM 3
	TUE	11/17/20		14	Collision Theory
	THUR	11/19/20			
	TUE	11/24/20		15	Special relativity
	THUR		Thanksgiving		No Class
	TUE	12/01/20			No Class
29	THUR	12/03/20			Review
	WED	Dec 16	FINAL EXAM	Wedr	nesday Dec. 16,2020, 11:30am - 2:30

Contents

Preface xi

PART I Essentials 1

CHAPTER 1	Newton's Laws of Motion 3					
1.1	Classical Mechanics 3					
1.2	Space and Time 4					
1.3	Mass and Force 9					
1.4	Newton's First and Second Laws; Inertial Frames 13					
1.5	The Third Law and Conservation of Momentum 17					
1.6	Newton's Second Law in Cartesian Coordinates 23					
1.7	Two-Dimensional Polar Coordinates 26					
	Principal Definitions and Equations of Chapter 1 33					
	Problems for Chapter 1 34					
CHAPTER 2	Projectiles and Charged Particles 43					
CHAPTER 2	Projectiles and Charged Particles 43 Air Resistance 43					
2.1	Air Resistance 43					
2.1 2.2	Air Resistance 43 Linear Air Resistance 46					
2.1 2.2 2.3	Air Resistance 43 Linear Air Resistance 46 Trajectory and Range in a Linear Medium 54					
2.1 2.2 2.3 2.4	Air Resistance 43 Linear Air Resistance 46 Trajectory and Range in a Linear Medium 54 Quadratic Air Resistance 57					
2.1 2.2 2.3 2.4 2.5	Air Resistance 43 Linear Air Resistance 46 Trajectory and Range in a Linear Medium 54 Quadratic Air Resistance 57 Motion of a Charge in a Uniform Magnetic Field 65					
2.1 2.2 2.3 2.4 2.5 2.6	Air Resistance 43 Linear Air Resistance 46 Trajectory and Range in a Linear Medium 54 Quadratic Air Resistance 57 Motion of a Charge in a Uniform Magnetic Field 65 Complex Exponentials 68					

vi Contents

CHAPTER 3 Momentum and Angular Momentum 83 Conservation of Momentum 83 3.2 Rockets 85 The Center of Mass 87 3.3 Angular Momentum for a Single Particle 90 Angular Momentum for Several Particles 93 Principal Definitions and Equations of Chapter 3 98 Problems for Chapter 3 99 CHAPTER 4 Energy 105 Kinetic Energy and Work 105 Potential Energy and Conservative Forces 109 Force as the Gradient of Potential Energy 116 The Second Condition that F be Conservative 118 Time-Dependent Potential Energy 121 Energy for Linear One-Dimensional Systems 123 Curvilinear One-Dimensional Systems 129 Central Forces 133 4.8 Energy of Interaction of Two Particles 138 4.10 The Energy of a Multiparticle System 144 Principal Definitions and Equations of Chapter 4 148 Problems for Chapter 4 150 CHAPTER 5 Oscillations 161 5 1 Hooke's Law 161 5.2 Simple Harmonic Motion 163 Two-Dimensional Oscillators 170 Damped Oscillations 173 5.5 Driven Damped Oscillations 179 Resonance 187 5.6 Fourier Series* 192 Fourier Series Solution for the Driven Oscillator* The RMS Displacement; Parseval's Theorem* 203 Principal Definitions and Equations of Chapter 5 205 Problems for Chapter 5 207

^{*} Sections marked with an asterisk could be omitted on a first reading.

EXAMPLE 7.8 Atwood's Machine Using a Lagrange Multiplier

Analyze the Atwood machine of Figure 7.6 (shown again here as Figure 7.11) by the method of Lagrange multipliers and using the coordinates x and y of the two masses.

In terms of the given coordinates, the Lagrangian is

$$\mathcal{L} = T - U = \frac{1}{2}m_1\dot{x}^2 + \frac{1}{2}m_2\dot{y}^2 + m_1gx + m_2gy \tag{7.123}$$

and the constraint equation is

$$f(x, y) = x + y = \text{const.}$$
 (7.124)

The modified Lagrange equation (7.118) for x reads

$$\frac{\partial \mathcal{L}}{\partial x} + \lambda \frac{\partial f}{\partial x} = \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{x}}$$
 or $m_1 g + \lambda = m_1 \ddot{x}$ (7.125)

and that for y is

$$\frac{\partial \mathcal{L}}{\partial y} + \lambda \frac{\partial f}{\partial y} = \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{y}}$$
 or $m_2 g + \lambda = m_2 \ddot{y}$. (7.126)

These two equations, together with the constraint equation (7.124), are easily solved for the unknowns x(t), y(t), and $\lambda(t)$. From (7.124) we see that $\ddot{y} = -\ddot{x}$, and then subtracting (7.126) from (7.125) we can eliminate λ and arrive at the same result as before,

$$\ddot{x} = (m_1 - m_2)g/(m_1 + m_2).$$

To better understand the two modified Lagrange equations (7.125) and (7.126), it is helpful to compare them with the two equations of the Newtonian solution. Newton's second law for m_1 is

$$m_1 g - F_t = m_1 \ddot{x}$$

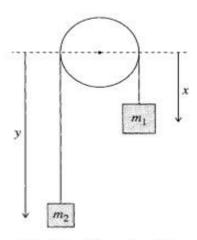


Figure 7.11 The Atwood machine again.

where F_t is the tension in the string, and that for m_2 is

$$m_2g - F_1 = m_2\ddot{y}$$
.

These are precisely the two Lagrange equations (7.125) and (7.126), with the Lagrange multiplier identified as the constraint force

$$\lambda = -F_t$$
.

[Two small comments: The minus sign occurs because both coordinates x and y were measured downward, whereas both tension forces are upward. In general, according to (7.122) the constraint force is $\lambda \partial f/\partial x$, but in this simple case, $\partial f/\partial x = 1$.]

$$\frac{\partial \mathcal{L}}{\partial x} + \lambda \frac{\partial f}{\partial x} = \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{x}}$$

or m

$$m_1 g + \lambda = m_1 \ddot{x} \tag{7.125}$$

$$\frac{d}{dt}\frac{dL}{dq'} - \frac{dL}{dq} = \lambda \frac{df}{dq}$$

f is constraint equation

$S[q, q'] = \int L[q, q']dq$

$$\delta S[q, q'] = 0$$

Principal Definitions and Equations of Chapter 6

The Euler-Lagrange Equation

An integral of the form

$$S = \int_{x_1}^{x_2} f[y(x), y'(x), x] dx$$
 [Eq. (6.4)]

taken along a path y = y(x) is stationary with respect to variations of that path if and only if y(x) satisfies the **Euler-Lagrange equation**

$$\frac{\partial f}{\partial y} - \frac{d}{dx} \frac{\partial f}{\partial y'} = 0.$$
 [Eq. (6.13)]

Here, f is function, we will replace by Lagrangian L