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https://youtu.be/skvnj67YGmw
https://youtu.be/Cld0p3a43fU
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EXaMPLE 7.8 Atwood’s Machine Using a Lagrange Multiplier

Analyze the Atwood machine of Figure 7.6 (shown again here as Figure 7.11)
by the method of Lagrange multipliers and using the coordinates x and y of the
wo masses.

In terms of the given coordinates, the Lagrangian is

L=T—U=3mx>+ 3my¥" + m; gx + mygy (7.123)
and the constraint equation is
Ffix, v) = x 4+ v = const. (7.124)

The modified Lagrange equation (7.118) for x reads
aL d d aL
L

ey Aax = or Mg+ h=mi (7.125)
and that for y is
4k lﬂ — 425 or mog + A= m,¥. (7.126)

— —
ay dy  dr av

These two equations, together with the constraint equation (7.124), are easily
solved for the unknowns x (¢}, vir), and A(¢). From (7.124) we see that ¥ = —X%.
and then subtracting (7.126) from (7.125) we can eliminate A and arrive at the
same result as before,

X=1i(my—ma)g/(m;+ ma).

To betiter understand the two modified Lagrange equations (7.125) and
(7.126). it is helpful to compare them with the two equations of the Newtonian
solution. Newton’s second law for m is

myg— F=mi

- g

Figure 7.11  The Atwood machine again.

where F, is the tension in the string, and that for m, is
mag — F,=m,¥.

Thesg are precisely the two Lagrange equations (7.125) and (7.126), with the
Lagrange multiplier identified as the constraint force

h=—F,

[Two small comments: The minus sign occurs because both coordinates x and y
were measured downward, whereas both tension forces are upward. In general,
according to (7.122) the constraint force is Adf/dx, but in this simple case,
affox =1]



. d d aLl. i
— il rf —_— or myg+i=mx (7.125)
Eil;u: dx dt dx

d dL dL df f is constraint equation

dt dq’ dq dq

Principal Definitions and Equations of Chapter 6

The Euler—Lagrange Equation

/ /
S[Q? q ] — L [g; q ]dq An integral of the form
3= f flyi(x), ¥(x), x]dx [Eqg. (6.4)]

/ taken along a path y = y(x) is stationary with respect to variations of that path if and
5 S [q q ] — O only if y(x) satisfies the Euler-Lagrange equation
Y

G Folog [Eq. (6.13)]

_____ Here, fis function, we will

replace by Lagrangian L
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