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2020 FALL PHYS 3344

# |DAY |LECTURE: NOTES: Chpt | TOPIC
1 |TUE 08/25/20 First Class 1 |Newtons Laws
2 |THUR 08/27/20 2 |Projectiles
3 |TUE 09/01/20 3 |Momentum & Angular Momentum
4 |THUR 09/03/20 4 |Energy
5 |[TUE 09/08/20 5 |Oscillations
6 |[THUR 09/10/20
7 |TUE 09/15/20
8 |THUR 09/17/20 EXAM 1
9 |TUE 09/22/20 6 |Calculus of Variations
10 |THUR 09/24/20 7 |Lagrange’s Equation
11|TUE 09/29/20
12 |THUR 10/01/20 8 |Two Body Problems
13|TUE 10/06/20
14 |THUR 10/08/20 9 |Non-Inertial Frames

TUE 10/13/20{ EalliBreak 10 |Rotational Motion
15 |THUR 10/15/20 EXAM 2
16 |TUE 10/20/20 10 |Rotational Motion
17 |THUR 10/22/20
18 |TUE 10/27/20 11|Coupled Oscillations
19 |THUR 10/29/20
20 |TUE 11/03/20 13 |Hamiltonian Mechanics
21 |THUR 11/05/20 Drop Date
22 |TUE 11/10/20
23 |THUR 11/12/20 EXAM 3
24 |TUE 11/17/20 14 |Collision Theory
25 |THUR 11/19/20
26 |TUE 11/24/20 15 |Special relativity
27 |THUR 11/26/20{ Thanksgiving No Class
28 |TUE 12/01/20 No Class
29 [THUR 12/03/20f Last Class Review

WED Dec 16 FINAL EXAM |Wednesday Dec. 16,2020, 11:30am - 2:30

Adjustments may be made depending on student interests/needs and unplanned events
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Principal Definitions and Equations of Chapter 6

The Euler—Lagrange Equation

/ /
S[Q? q ] — L [g; q ]dq An integral of the form
3= f-‘l flyi(x), y(x), x1ldx [Eq. (6.4)]
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Y

O ) [Eq. (6.13)]

_____ Here, fis function, we will
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EXaMPLE 7.8 Atwood’s Machine Using a Lagrange Multiplier

Analyze the Atwood machine of Figure 7.6 (shown again here as Figure 7.11)
by the method of Lagrange multipliers and using the coordinates x and y of the
wo masses.

In terms of the given coordinates, the Lagrangian is

L=T—U=3mx>+ 3my¥" + m; gx + mygy (7.123)
and the constraint equation is
Ffix, v) = x 4+ v = const. (7.124)

The modified Lagrange equation (7.118) for x reads
aL d d aL
L

ey Aax = or Mg+ h=mi (7.125)
and that for y is
4k lﬂ — 425 or mog + A= m,¥. (7.126)

— —
ay dy  dr av

These two equations, together with the constraint equation (7.124), are easily
solved for the unknowns x (¢}, vir), and A(¢). From (7.124) we see that ¥ = —X%.
and then subtracting (7.126) from (7.125) we can eliminate A and arrive at the
same result as before,

X=1i(my—ma)g/(m;+ ma).

To betiter understand the two modified Lagrange equations (7.125) and
(7.126). it is helpful to compare them with the two equations of the Newtonian
solution. Newton’s second law for m is

myg— F=mi

- g

Figure 7.11  The Atwood machine again.

where F, is the tension in the string, and that for m, is
mag — F,=m,¥.

Thesg are precisely the two Lagrange equations (7.125) and (7.126), with the
Lagrange multiplier identified as the constraint force

h=—F,

[Two small comments: The minus sign occurs because both coordinates x and y
were measured downward, whereas both tension forces are upward. In general,
according to (7.122) the constraint force is Adf/dx, but in this simple case,
affox =1]
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