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# |DAY |LECTURE: NOTES: Chpt | TOPIC
1 |TUE 08/25/20 First Class 1 |Newtons Laws
2 |THUR 08/27/20 2 |Projectiles
3 |TUE 09/01/20 3 |Momentum & Angular Momentum
4 |THUR 09/03/20 4 |Energy
5 |[TUE 09/08/20 5 |Oscillations
6 |[THUR 09/10/20
7 |TUE 09/15/20
8 |THUR 09/17/20 EXAM 1
9 |TUE 09/22/20 6 |Calculus of Variations
10 |THUR 09/24/20 7 |Lagrange’s Equation
11|TUE 09/29/20
12 |THUR 10/01/20 8 |Two Body Problems
13|TUE 10/06/20
14 |THUR 10/08/20 9 |Non-Inertial Frames

TUE 10/13/20{ EalliBreak 10 |Rotational Motion
15 |THUR 10/15/20 EXAM 2
16 |TUE 10/20/20 10 |Rotational Motion
17 |THUR 10/22/20
18 |TUE 10/27/20 11|Coupled Oscillations
19 |THUR 10/29/20
20 |TUE 11/03/20 13 |Hamiltonian Mechanics
21 |THUR 11/05/20 Drop Date
22 |TUE 11/10/20
23 |THUR 11/12/20 EXAM 3
24 |TUE 11/17/20 14 |Collision Theory
25 |THUR 11/19/20
26 |TUE 11/24/20 15 |Special relativity
27 |THUR 11/26/20{ Thanksgiving No Class
28 |TUE 12/01/20 No Class
29 [THUR 12/03/20f Last Class Review

WED Dec 16 FINAL EXAM |Wednesday Dec. 16,2020, 11:30am - 2:30

Adjustments may be made depending on student interests/needs and unplanned events
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Figure 9.7 The earth’s rotation drags the point P on the surface

around a circle of latitude (radius p = r sin@) with speed v =
wp = wr sinf and hence velocity v=® X I.



Formula [edi)

See also: Fictitious force
In Newtonian mechanics, the equation of motion for an object in an inertial reference frame is
F=ma
where F'is the vector sum of the physical forces acting on the object, m. is the mass of the object, and a is the acceleration of the object relative to the inertial reference frame.

Transforming this equation to a reference frame rotating about a fixed axis through the origin with rotation vector £2 having variable rotation rate, the equation takes the form

F’—md—?xr'—2mﬂxv'—mﬂx(ﬂxr’):ma’

where

F’ is the vector sum of the physical forces acting on the object relative to the rotating reference frame
€ is the rotation vector, with magnitude w, of the rotating reference frame relative to the inertial frame
v’ is the velocity relative to the rotating reference frame

7' is the position vector of the object relative to the rotating reference frame

a' is the acceleration relative to the rotating reference frame

The fictitious forces as they are perceived in the rotating frame act as additional forces that contribute to the apparent acceleration just like the real external forces 1251261 The fictitious force terms

of the equation are, reading from left to right:im

e
® Euler force —m—— X 7
dt

e Coriolis force —2m{Q x v’
» centrifugal force —mgY x (0 x ')

Notice the Euler and centrifugal forces depend on the position vector 7' of the object, while the Coriolis force depends on the object's velocity v' as measured in the rotating reference frame. As

expected, for a non-rotating inertial frame of reference (ﬂ = {]) the Coriolis force and all other fictitious forces disappear.[28] The forces also disappear for zero mass ('m = O).
As the Coriolis force is proportional to a cross product of two vectors, it is perpendicular to both vectors, in this case the object's velocity and the frame's rotation vector. It therefore follows that:

= if the velocity is parallel to the rotation axis, the Coriolis force is zero. (For example, on Earth, this situation occurs for a body on the equator moving north or south relative to Earth's surface.)

T LTI Iy S U, LU
the rightward motion of the
ball is faster than that of the
tower.

Image from Cursus seu &
Mundus Mathematicus (1674)
of C.F.M. Dechales, showing
how a ball should fall from a
tower on a rotating Earth. The
ball is released from F. The
top of the tower moves faster
than its base, so while the ball
falls, the base of the tower
moves to /, but the ball, which
has the eastward speed of the
tower's top, outruns the
tower's base and lands further
to the east at L.

= if the velocity is straight inward to the axis, the Coriolis force is in the direction of local rotation. (For example, on Earth, this situation occurs for a body on the equator falling downward, as in the Dechales illustration above,

where the falling ball travels further to the east than does the tower.)

s jf the velocity is straight outward from the axis, the Coriolis force is against the direction of local rotation. (In the tower example, a ball launched upward would move toward the west.)

» if the velocity is in the direction of rotation, the Coriolis force is outward from the axis. (For example, on Earth, this situation occurs for a body on the equator moving east relative to Earth's surface. It would move upward as

seen by an observer on the surface. This effect (see Edtvds effect below) was discussed by Galileo Galilei in 1632 and by Riccioli in 1651.[291)

» if the velocity is against the direction of rotation, the Coriolis force is inward to the axis. (On Earth, this situation occurs for a body on the equator moving west, which would deflect downward as seen by an observer.)



Relation between velocities in the two frames | edit]

A velocity of an object is the time-derivative of the object's position, or

def dr
V= —
dt
The time derivative of a position 'r'(t) in a rotating reference frame has two components, one from the explicit time dependence due to motion of the
particle itself, and another from the frame's own rotation. Applying the result of the previous subsection to the displacement r(t), the velocities in the
two reference frames are related by the equation

def dr dr
i = — =\ — Qxr= T 2 x )
v T (dt)r+ r=v; + r

where subscript i means the inertial frame of reference, and r means the rotating frame of reference.

Relation between accelerations in the two frames |[edit]

Acceleration is the second time derivative of position, or the first time derivative of velocity

(%)~ (8),- (@) > (&), o]

where subscript i means the inertial frame of reference. Carrying out the differentiations and re-arranging some terms yields the acceleration relative fo
the rotating reference frame, a,

ar=a1—2ﬂxvr—ﬂx(ﬂ><r)—%xr

def (d . . . ; ;
where a, = (—2) is the apparent acceleration in the rotating reference frame, the term —§0 X (Q X r) represents centrifugal acceleration, and
r

the term —2£2 X v, is the Coriolis acceleration. The last term (_E X T) is the Euler acceleration and is zero in uniformly rotating frames.



Newton's second law in the two frames [edit]

When the expression for acceleration is multiplied by the mass of the particle, the three extra terms on the right-hand side result in fictitious forces in
the rotating reference frame, that is, apparent forces that result from being in a non-inertial reference frame, rather than from any physical interaction
between bodies.

Using Newton's second law of motion F' = ma, we obtain:[1I[2IBI516]

e the Coriolis force
FCoriolis = —2mi2 X V;
e the centrifugal force

Fcentrifugal = —mfl X (n X I‘)

e and the Euler force

dQ
FEuler = _mE Xr

where m is the mass of the object being acted upon by these fictitious forces. Notice that all three forces vanish when the frame is not rotating, that is,
when £2 =0 .

For completeness, the inertial acceleration a; due to impressed external forces Fimp can be determined from the total physical force in the inertial

(non-rotating) frame (for example, force from physical interactions such as electromagnetic forces) using Newton's second law in the inertial frame:
F'me = ma;
Newton's law in the rotating frame then becomes
F: = Fimp + Fcentrifugal + Fcoriolis + FEuler = ma, .

In other words, to handle the laws of motion in a rotating reference frame:[6I[71(8]



a L caf d aL
+ A= =

i — e — or #H 4+ A =m,x (7.125)
Bi ax it B3 1 ’

d dL dL df f Is constraint equation

dt dq’ dq dq

Principal Definitions and Equations of Chapter 6

The Euler—Lagrange Equation

/ /
S[Q? q ] — L [g; q ]dq An integral of the form
3= f-‘l flyi(x), y(x), x1ldx [Eq. (6.4)]

/ taken along a path y = y(x) is stationary with respect to variations of that path if and
5 S [q q ] — O only if y(x) satisfies the Euler-Lagrange equation
Y

O ) [Eq. (6.13)]

_____ Here, fis function, we will

replace by Lagrangian L
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