Phys 3344: Tuesday 13 Oct
Office Hours: Wed 5:00-6:00
Exam #2: this week Ch. 6-9 + Ch5. Fourier Transforms
Cho9
Eigenvalues
Homework #8:

https://lyoutu.be/QfDQeKAyVag
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# |DAY |LECTURE: MNOTES: Chpt | TOPIC
1 |TUE 08/25/20 First Class 1 |Newtons Laws
2 |THUR 08/27/20 2 |Projectiles
3 |TUE 09/01/20 3 |[Momentum & Angular Momentum
4 |THUR 09/03/20 4 |Energy
5 |TUE 09/08/20 5 |Oscillations
6 [THUR 09/10/20
7 |TUE 09/15/20
8 |THUR 09/17/20 EXAM 1
9 |TUE 09/22/20 6 |Calculus of Variations
10 |THUR 09/24/20 7 |Lagrange’s Equation
11|TUE 09/29/20
12 |THUR 10/01/20 8 |Two Body Problems
13|TUE 10/06/20
14 |THUR 10/08/20 9 |Non-Inertial Frames

TUE 10/13/20{ Eall Break 10 |Rotational Motion
15 |THUR 10/15/20 EXAM 2
16 |TUE 10/20/20 10 |Rotational Motion
17 |THUR 10/22/20
18 |TUE 10/27/20 11|Coupled Oscillations
19 |THUR 10/29/20
20 |TUE 11/03/20 13 |Hamiltonian Mechanics
21 (THUR 11/05/20 Drop Date
22 |TUE 11/10/20
23 |THUR 11/12/20 EXAM 3
24 |TUE 11/17/20 14 |Collision Theory
25 [THUR 11/19/20
26 |TUE 11/24/20 15 |Special relativity
27 |THUR 11/26/20{ Thanksgiving No Class
28 |TUE 12/01/20 No Class
29 [THUR 12/03/20| Last Class Review

WED Dec 16 FINAL EXAM |Wednesday Dec. 16,2020, 11:30am - 2:30

Adjustments may be made depending on student interests/needs and unplanned events




Slg,q'] = / Liq,q']dq
L=T-U |
p F.=2mr x and F;=m(R xr) x Q. [Egs. (9.35) & (9.36)]
6Slq,q') =0
d dL d.L B df FCorioliSI = —2m& X v;
dt d¢  dq =~ dqg o (@)

e and the Euler force

d2

f is constraint equation Frue = —T—— x 1
uler dt

mi1mmso

ml—l—mg

H = 1M1 + oMo

Roy =

M1 + M9
C

" 1+ ecoso sin 0 + cos 6% = 1

(o)



MECHANICS

Ve = Voo + ﬂ_\.f

I
T=xp kvl ?axr‘

1'i = 1';] +2a,(x - x)

= Z.F = Iam

n
|Fl < ulfi]
2
_ Vv
4 ==
P =mi
Ap=FN
_l 2
K= 7
AE =W = Fyd = Fdcost

P=3

8 =8, + ayr + %a!z
@ =@y +at
x = Acos(2x fr)

— & — fnw
I

1

t=rF =rFsing

L=1Iw
AL =1tMt
N
R’—Eim
|F.| = kI
U, =tk
—m
Py

a = acceleration

A = amplitude

d = distance

E = energy

I = frequency

F = force

I = rotational inertia
K = kinetic energy

k = spring constant

L = angular momentum
¢ = length

M= Mmass

P = power

p = momentum

r = radius or separation
T = period

1 = time

U = potential energy
V = volume

v = speed

W= work done on a system
X = position

v = height

a = angular acceleration

i = coefficient of friction

@ = angle
2 = density
T = torque

@ = angular speed
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GEOMETRY AND TRIGONOMETRY
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Chapter 10
Rotations



A force Fisapplied to a dumbbell for a time
interval [ ¢,firstasin (a) and thenasin (b).In
which case does the dumbbell acquire the

greater center-of-mass speed?

L,,
F
—
(m)
(a) (b)

1. (a)
2. b)
3. no difference

4. The answer depends on the rotational
inertia of the dumbbell.

A force Fisapplied to a dumbbell for a time
interval 0 ¢,firstasin (a) and thenasin (b).In
which case does the dumbbell acquire the
greater energy?

F
(m) (m)
F
—
(m) (m)
(a) (b)

(a)

(b)

no difference

The answer depends on the rotational
inertia of the dumbbell.
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Source of the Coriolis effect: https://youtu.be/QfDQeKAyVag

Rotating bodies https://youtu.be/BPMjcN-sBJ4
textbook spinning

How many DOF?7?

Intermediate axis theorem https://youtu.be/1VPfZ_XzisU
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Euler angles

3N

Classic Euler angles geometrical definition. The xyz

(fixed) system is shown in blue, the XYZ (rotated)

system is shown in red. The line of nodes (N) is

shown in green
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Chapter 9
Non-Interial
Frames



Qxr

F=m( xr) x )

dl o
dt 8, dt S

The vector £ x r is the velocity of an object as it is
dragged eastward with speed $2p by the earth’s rotation. Therefore,
the centrifugal force, m (82 x r) x §2, points radially outward from
the axis and has magnitude m2?p.



Relation between velocities in the two frames [ edit]

A velocity of an object is the time-derivative of the object's position, or

def dr
V= —
dt
The time derivative of a position 'r'(t) in a rotating reference frame has two components, one from the explicit time dependence due to motion of the
particle itself, and another from the frame's own rotation. Applying the result of the previous subsection to the displacement r(t), the velocities in the
two reference frames are related by the equation

def dr dr
= — == Qxr=v,+Qxr,
v a (dt)r—l— r=v, + r

where subscript i means the inertial frame of reference, and r means the rotating frame of reference.

Relation between accelerations in the two frames |[edit]

Acceleration is the second time derivative of position, or the first time derivative of velocity

«#(5),~ (%), - (@) > (&), o]

where subscript i means the inertial frame of reference. Carrying out the differentiations and re-arranging some terms yields the acceleration relative fo
the rotating reference frame, a,

ar:ai—2ﬂxvr—ﬂx(ﬂxr)—%xr

def (d . .
where a, = (—2) is the apparent acceleration in the rotating reference frame, the term —§2 X (Q X r) represents centrifugal acceleration, and
I

the term —2§2 X Vv, is the Coriolis acceleration. The last term (_E X T) is the Euler acceleration and is zero in uniformly rotating frames.



Newton's second law in the two frames |[edit]

When the expression for acceleration is multiplied by the mass of the particle, the three extra terms on the right-hand side result in fictitious forces in
the rotating reference frame, that is, apparent forces that result from being in a non-inertial reference frame, rather than from any physical interaction
between bodies.

Using Newton's second law of motion F' = ma, we obtain:[1I[2IEI5I6]

e the Coriolis force
FCoriolis = —2mf2 X vV
e the centrifugal force

Fcentrifugal = —mf2 X (Q X I‘)

e and the Euler force

dQ2
FEuler = _mE e

where m is the mass of the object being acted upon by these fictitious forces. Notice that all three forces vanish when the frame is not rotating, that is,
when 2 = 0.

For completeness, the inertial acceleration a; due to impressed external forces ijp can be determined from the total physical force in the inertial

(non-rotating) frame (for example, force from physical interactions such as electromagnetic forces) using Newton's second law in the inertial frame:
Fimp = ma;
Newton's law in the rotating frame then becomes
F; = Finp + Feentritugal + Fcoriolis + FEuler = ma, .

In other words, to handle the laws of motion in a rotating reference frame:[6I[71(8]



Coriolis: about 3:00min

https://youtu.be/6L5UD240mCQ

Figure 9.11 Because of the centrifugal force, the free-fall accel-
eration g has a nonzero tangential component (greatly exagger-
ated here) and g deviates from the radial direction by the small

le «.
ang https://youtu.be/f8IwL2ZtDTc


https://youtu.be/f8IwL2ZtDTc
https://youtu.be/6L5UD240mCQ

Body moving north (v, negative, other compo-
nents zero); coriolis force eastward:

B 0

—

Body moving south (vg positive, other compo-
nents zero); coriolis force westward:

)
WXV

car —

Body moving east (v positive, other components

zero), coriolis force has component in southward
direction:

c!
X
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We see that for any body moving on the surface
of the earth in the northern hemisphere, the
coriolis force deflects it to the right. This is
responsible for the counterclockwise rotation of
the bath water as it drains from your tub, as
viewed from above:

The same applies to the direction of air flow
around an area of low atmospheric pressure.



Another case where the coriolis force is impor-
tant is the Foucault pendulum (pronounced “Foo-
ko). This is a very large pendulum which you
sometimes see in the lobbies of big important
buildings. The plane in which the pendulum
swings back and forth precesses, or turns, slowly
around in a clockwise direction as viewed from
above. The following diagram shows why:

As the pendulum swings across, the coriolis force
pushes it to the right. On the way back it is also
pushed to the right, and this just rotates the plane
of the pendulum further in the clockwise sense.
The Foucault pendulum is a rather striking
demonstration of the rotation of the earth. Here
is a movie showing the Foucault pendulum from
above.

Last but not least, there is also an eastward force
on a body falling vertically:

Body falling vertically (v, negative,
components zero),; coriolis force eastward:

®

other
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