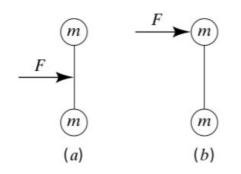
Phys 3344: Tuesday 20 Oct

Office Hours: Wed 5:00-6:00

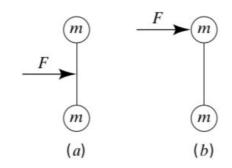
Exam 2: graded; solutions recorded and on website

Grades: make up homework promptly

Ch 10


Homework #9:

		2020 FALL PHYS 3344						
#	DAY	LECTURE:	NOTES:	Chpt	TOPIC			
1	TUE	08/25/20	First Class	1	Newtons Laws			
2	THUR	08/27/20		2	Projectiles			
3	TUE	09/01/20		3	Momentum & Angular Momentum			
4	THUR	09/03/20		4	Energy			
5	TUE	09/08/20		5	Oscillations			
6	THUR	09/10/20						
7	TUE	09/15/20						
8	THUR	09/17/20			EXAM 1			
9	TUE	09/22/20		6	Calculus of Variations			
10		09/24/20		7	Lagrange's Equation			
11		09/29/20						
12	THUR	10/01/20		8	Two Body Problems			
	TUE	10/06/20						
14	THUR	10/08/20		9	Non-Inertial Frames			
	TUE	10/13/20		10	Rotational Motion			
	THUR	10/15/20			EXAM 2			
	TUE	10/20/20		10	Rotational Motion			
	THUR	10/22/20						
	TUE	10/27/20		11	Coupled Oscillations			
	THUR	10/29/20						
-	TUE	11/03/20		13	Hamiltonian Mechanics			
	THUR	11/05/20						
	TUE	11/10/20						
	THUR	11/12/20			EXAM 3			
	TUE	11/17/20		14	Collision Theory			
-	THUR	11/19/20						
	TUE	11/24/20		15				
	THUR		Thanksgiving		No Class			
	TUE	12/01/20			No Class			
29	THUR	12/03/20			Review			
	WED	WED Dec 16 FINAL EXAM Wednesday Dec. 16,2020, 11:30am - 2:30						
	Adjusti	djustments may be made depending on student interests/needs and unplanned events						


	Contents vii	viii	Contents	
	100 St. 50		9.5	Newton's Second Law in a Rotating Frame 342
CHAPTER 6 Calculus of Variations 215			9.6	The Centrifugal Force 344
6.1 Two Examples 216			9.7	The Coriolis Force 348
6.2 The Euler–Lagrange Equation 218			9.8	Free Fall and the Coriolis Force 351
6.3 Applications of the Euler–Lagrange Equation 221			9.9	The Foucault Pendulum 354
6.4 More than Two Variables 226			9.10	Coriolis Force and Coriolis Acceleration 358
Principal Definitions and Equations of Chapter 6 230				Principal Definitions and Equations of Chapter 9 359
Problems for Chapter 6 230				Problems for Chapter 9 360
CHAPTER 7 Lagrange's Equations 237			CHAPTER 10	Rotational Motion of Rigid Bodies 367
7.1 Lagrange's Equations for Unconstrained Motion 238			10.1	Properties of the Center of Mass 367
7.2 Constrained Systems; an Example 245			10.2	Rotation about a Fixed Axis 372
7.3 Constrained Systems in General 247			10.3	Rotation about Any Axis; the Inertia Tensor 378
7.4 Proof of Lagrange's Equations with Constraints 250			10.4	Principal Axes of Inertia 387
7.5 Examples of Lagrange's Equations 254			10.5	Finding the Principal Axes; Eigenvalue Equations 389
7.6 Generalized Momenta and Ignorable Coordinates 266			10.6	Precession of a Top due to a Weak Torque 392
7.7 Conclusion 267			10.7	Euler's Equations 394
7.8 More about Conservation Laws* 268			10.8	Euler's Equations with Zero Torque 397
7.9 Lagrange's Equations for Magnetic Forces * 272			10.9	Euler Angles* 401
7.10 Lagrange Multipliers and Constraint Forces* 275			10.10	Motion of a Spinning Top* 403
Principal Definitions and Equations of Chapter 7 280				Principal Definitions and Equations of Chapter 10 407
Problems for Chapter 7 281				Problems for Chapter 10 408
CHAPTER 8 Two-Body Central-Force Problems 293			CHAPTER 11	Coupled Oscillators and Normal Modes 417
8.1 The Problem 293			11.1	Two Masses and Three Springs 417
8.2 CM and Relative Coordinates; Reduced Mass 295			11.2	Identical Springs and Equal Masses 421
8.3 The Equations of Motion 297			11.3	Two Weakly Coupled Oscillators 426
8.4 The Equivalent One-Dimensional Problem 300			11.4	Lagrangian Approach: The Double Pendulum 430
8.5 The Equation of the Orbit 305			11.5	The General Case 436
8.6 The Kepler Orbits 308			11.6	Three Coupled Pendulums 441
8.7 The Unbounded Kepler Orbits 313			11.7	Normal Coordinates* 444
8.8 Changes of Orbit 315				Principal Definitions and Equations of Chapter 11 447
Principal Definitions and Equations of Chapter 8 319				Problems for Chapter 11 448
Problems for Chapter 8 320				
CHAPTER 9 Mechanics in Noninertial Frames 327			PARTI	Further Topics 455
9.1 Acceleration without Rotation 327			CHAPTER 12	Nonlinear Mechanics and Chaos 457
9.2 The Tides 330			12.1	Linearity and Nonlinearity 458
9.3 The Angular Velocity Vector 336			12.2	
9.4 Time Derivatives in a Rotating Frame 339				Some Expected Features of the DDP 463

Chapter 10 Rotations

A force F is applied to a dumbbell for a time interval \Box t, first as in (a) and then as in (b). In which case does the dumbbell acquire the greater center-of-mass speed?

A force F is applied to a dumbbell for a time interval \Box t, first as in (a) and then as in (b). In which case does the dumbbell acquire the greater energy?

- 1. (*a*)
- 2. (b)
- 3. no difference
- 4. The answer depends on the rotational inertia of the dumbbell.

- 1. (a)
- 2. (*b*
- 3. no difference
- 4. The answer depends on the rotational inertia of the dumbbell.

Source of the Coriolis effect: https://youtu.be/QfDQeKAyVag

Rotating bodies https://youtu.be/BPMjcN-sBJ4 textbook spinning

How many DOF???

Intermediate axis theorem https://youtu.be/1VPfZ_XzisU

Principal Definitions and Equations of Chapter 10

CM and Relative Motions

$$L = L(motion of CM) + L (motion relative to CM).$$
 [Eq. (10.9)]

and

$$T = T \text{ (motion of CM)} + T \text{ (motion relative to CM)}.$$
 [Eq. (10.16)]

The Moment of Inertia Tensor

The angular momentum L and angular velocity ω of a rigid body are related by

$$\mathbf{L} = \mathbf{I}\boldsymbol{\omega}$$
 [Eq.(10.42)]

where L and ω must be seen as 3×1 columns and I is the 3×3 moment of inertia tensor, whose diagonal and off-diagonal elements are defined as

$$I_{xx} = \sum_{\alpha} m_{\alpha} (y_{\alpha}^2 + z_{\alpha}^2)$$
, etc. and $I_{xy} = -\sum_{\alpha} m_{\alpha} x_{\alpha} y_{\alpha}$, etc.

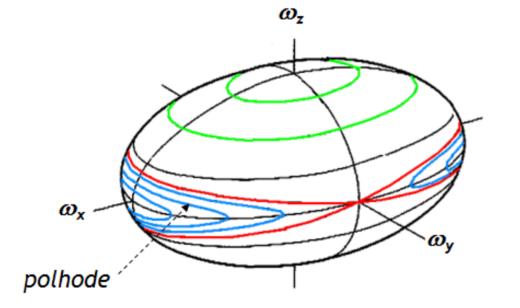
Principal Axes

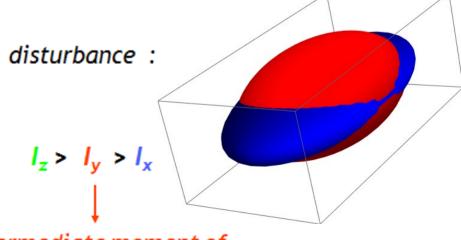
A **principal axis** of a body (about a point O) is any axis through O with the property that if ω points along the axis, then L is parallel to ω ; that is,

$$\mathbf{L} = \lambda \boldsymbol{\omega} \qquad [\text{Eq. } (10.65)]$$

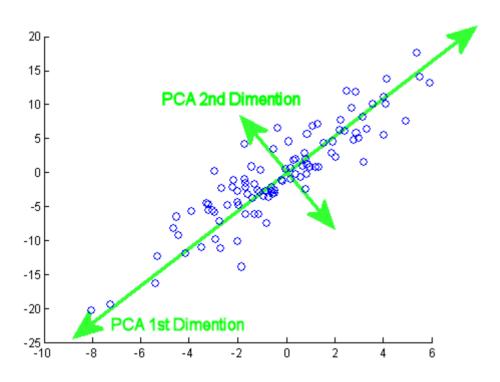
angular momentum (L)

$$L^{2} = I_{x}^{2} \omega_{x}^{2} + I_{y}^{2} \omega_{y}^{2} + I_{z}^{2} \omega_{z}^{2}$$

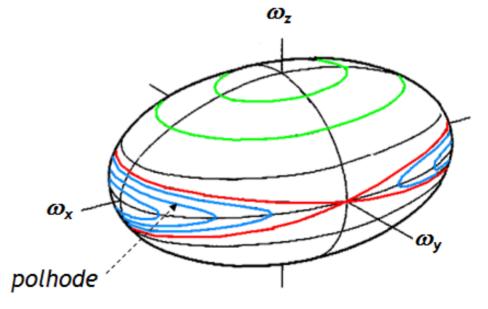

$$\frac{\omega_{x}^{2}}{(L/I_{x})^{2}} + \frac{\omega_{y}^{2}}{(L/I_{y})^{2}} + \frac{\omega_{z}^{2}}{(L/I_{z})^{2}} = 1$$


rotational kinetic energy (T_{rot})

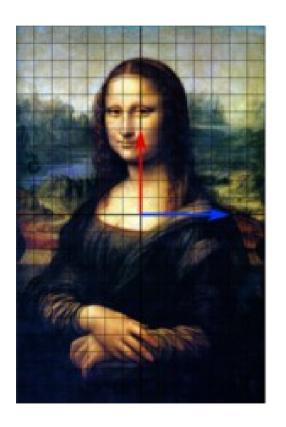
$$T_{rot} = \frac{1}{2} (I_x \omega_x^2 + I_y \omega_y^2 + I_z \omega_z^2)$$

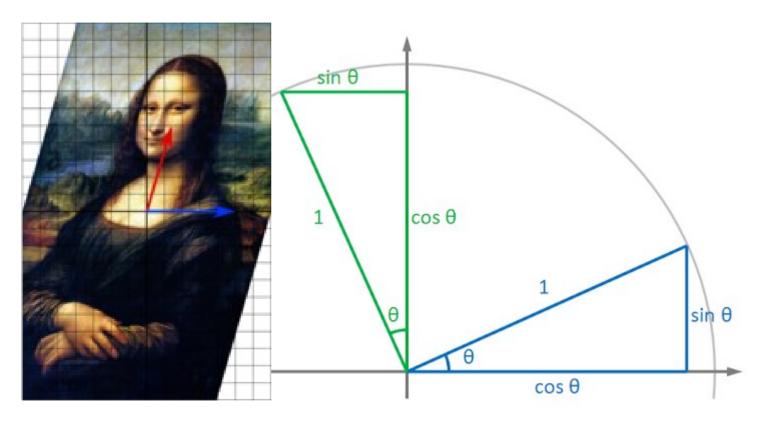

$$\frac{\omega_{x}^{2}}{(\sqrt{2T/I_{x}})^{2}} + \frac{\omega_{y}^{2}}{(\sqrt{2T/I_{y}})^{2}} + \frac{\omega_{z}^{2}}{(\sqrt{2T/I_{z}})^{2}} = 1$$

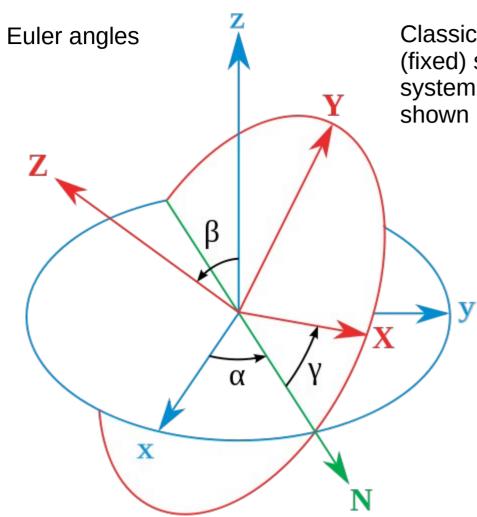
 $\omega_{\mathsf{x}},\,\omega_{\mathsf{y}},\,\omega_{\mathsf{z}}$: constant



intermediate moment of inertia




$$I_{xy} = -\sum_{\alpha} m_{\alpha} x_{\alpha} y_{\alpha},$$


$$I_{xx} = \sum_{\alpha} m_{\alpha} (y_{\alpha}^2 + z_{\alpha}^2), \quad \text{e.} \quad .$$

Eigen vectors and rotations

Classic Euler angles geometrical definition. The xyz (fixed) system is shown in blue, the XYZ (rotated) system is shown in red. The line of nodes (N) is shown in green

Proper Euler angles	Tait–Bryan angles			
$X_1Z_2X_3 = egin{bmatrix} c_2 & -c_3s_2 & s_2s_3 \ c_1s_2 & c_1c_2c_3 - s_1s_3 & -c_3s_1 - c_1c_2s_3 \ s_1s_2 & c_1s_3 + c_2c_3s_1 & c_1c_3 - c_2s_1s_3 \end{bmatrix}$	$X_1Z_2Y_3 = egin{bmatrix} c_2c_3 & -s_2 & c_2s_3 \ s_1s_3 + c_1c_3s_2 & c_1c_2 & c_1s_2s_3 - c_3s_1 \ c_3s_1s_2 - c_1s_3 & c_2s_1 & c_1c_3 + s_1s_2s_3 \end{bmatrix}$			
$X_1Y_2X_3 = egin{bmatrix} c_2 & s_2s_3 & c_3s_2 \ s_1s_2 & c_1c_3-c_2s_1s_3 & -c_1s_3-c_2c_3s_1 \ -c_1s_2 & c_3s_1+c_1c_2s_3 & c_1c_2c_3-s_1s_3 \end{bmatrix}$	$X_1Y_2Z_3 = egin{bmatrix} c_2c_3 & -c_2s_3 & s_2 \ c_1s_3+c_3s_1s_2 & c_1c_3-s_1s_2s_3 & -c_2s_1 \ s_1s_3-c_1c_3s_2 & c_3s_1+c_1s_2s_3 & c_1c_2 \end{bmatrix}$			
$Y_1X_2Y_3 = egin{bmatrix} c_1c_3 - c_2s_1s_3 & s_1s_2 & c_1s_3 + c_2c_3s_1 \ s_2s_3 & c_2 & -c_3s_2 \ -c_3s_1 - c_1c_2s_3 & c_1s_2 & c_1c_2c_3 - s_1s_3 \end{bmatrix}$	$Y_1X_2Z_3 = egin{bmatrix} c_1c_3+s_1s_2s_3 & c_3s_1s_2-c_1s_3 & c_2s_1 \ c_2s_3 & c_2c_3 & -s_2 \ c_1s_2s_3-c_3s_1 & c_1c_3s_2+s_1s_3 & c_1c_2 \end{bmatrix}$			
$Y_1Z_2Y_3 = egin{bmatrix} c_1c_2c_3 - s_1s_3 & -c_1s_2 & c_3s_1 + c_1c_2s_3 \ c_3s_2 & c_2 & s_2s_3 \ -c_1s_3 - c_2c_3s_1 & s_1s_2 & c_1c_3 - c_2s_1s_3 \end{bmatrix}$	$Y_1Z_2X_3 = egin{bmatrix} c_1c_2 & s_1s_3 - c_1c_3s_2 & c_3s_1 + c_1s_2s_3 \ s_2 & c_2c_3 & -c_2s_3 \ -c_2s_1 & c_1s_3 + c_3s_1s_2 & c_1c_3 - s_1s_2s_3 \end{bmatrix}$			
$Z_1Y_2Z_3 = egin{bmatrix} c_1c_2c_3 - s_1s_3 & -c_3s_1 - c_1c_2s_3 & c_1s_2 \ c_1s_3 + c_2c_3s_1 & c_1c_3 - c_2s_1s_3 & s_1s_2 \ -c_3s_2 & s_2s_3 & c_2 \end{bmatrix}$	$Z_1Y_2X_3 = egin{bmatrix} c_1c_2 & c_1s_2s_3 - c_3s_1 & s_1s_3 + c_1c_3s_2 \ c_2s_1 & c_1c_3 + s_1s_2s_3 & c_3s_1s_2 - c_1s_3 \ -s_2 & c_2s_3 & c_2c_3 \end{bmatrix}$			
$Z_1 X_2 Z_3 = egin{bmatrix} c_1 c_3 - c_2 s_1 s_3 & -c_1 s_3 - c_2 c_3 s_1 & s_1 s_2 \ c_3 s_1 + c_1 c_2 s_3 & c_1 c_2 c_3 - s_1 s_3 & -c_1 s_2 \ s_2 s_3 & c_3 s_2 & c_2 \end{bmatrix}$	$Z_1X_2Y_3 = egin{bmatrix} c_1c_3 - s_1s_2s_3 & -c_2s_1 & c_1s_3 + c_3s_1s_2 \ c_3s_1 + c_1s_2s_3 & c_1c_2 & s_1s_3 - c_1c_3s_2 \ -c_2s_3 & s_2 & c_2c_3 \end{bmatrix}$			