Phys 3344: Tuesday 20 Oct

Office Hours: Wed 5:00-6:00

Exam 2: graded; solutions recorded and on website
Grades: make up homework promptly

Ch 10

Homework #9:



2020 FALL PHYS 3344

# |DAY |LECTURE: MNOTES: Chpt | TOPIC
1 |TUE 08/25/20 First Class 1 |Newtons Laws
2 |THUR 08/27/20 2 |Projectiles
3 |TUE 09/01/20 3 |[Momentum & Angular Momentum
4 |THUR 09/03/20 4 |Energy
5 |TUE 09/08/20 5 |Oscillations
6 [THUR 09/10/20
7 |TUE 09/15/20
8 |THUR 09/17/20 EXAM 1
9 |TUE 09/22/20 6 |Calculus of Variations
10 |THUR 09/24/20 7 |Lagrange’s Equation
11|TUE 09/29/20
12 |THUR 10/01/20 8 |Two Body Problems
13|TUE 10/06/20
14 |THUR 10/08/20 9 |Non-Inertial Frames

TUE 10/13/20{ Eall Break 10 |Rotational Motion
15 |THUR 10/15/20 EXAM 2
16 |TUE 10/20/20 10 |Rotational Motion
17 |THUR 10/22/20
18 |TUE 10/27/20 11|Coupled Oscillations
19 |THUR 10/29/20
20 |TUE 11/03/20 13 |Hamiltonian Mechanics
21 (THUR 11/05/20 Drop Date
22 |TUE 11/10/20
23 |THUR 11/12/20 EXAM 3
24 |TUE 11/17/20 14 |Collision Theory
25 [THUR 11/19/20
26 |TUE 11/24/20 15 |Special relativity
27 |THUR 11/26/20{ Thanksgiving No Class
28 |TUE 12/01/20 No Class
29 [THUR 12/03/20| Last Class Review

WED Dec 16 FINAL EXAM |Wednesday Dec. 16,2020, 11:30am - 2:30

Adjustments may be made depending on student interests/needs and unplanned events
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Chapter 10
Rotations



A force Fisapplied to a dumbbell for a time
interval [ ¢,firstasin (a) and thenasin (b).In
which case does the dumbbell acquire the

greater center-of-mass speed?

L,,
F
—
(m)
(a) (b)

1. (a)
2. b)
3. no difference

4. The answer depends on the rotational
inertia of the dumbbell.

A force Fisapplied to a dumbbell for a time
interval 0 ¢,firstasin (a) and thenasin (b).In
which case does the dumbbell acquire the
greater energy?

F
(m) (m)
F
—
(m) (m)
(a) (b)

(a)

(b)

no difference

The answer depends on the rotational
inertia of the dumbbell.

=~ W



Source of the Coriolis effect: https://youtu.be/QfDQeKAyVag

Rotating bodies https://youtu.be/BPMjcN-sBJ4
textbook spinning

How many DOF?7?

Intermediate axis theorem https://youtu.be/1VPfZ_XzisU



Principal Definitions and Equations of Chapter 10

CM and Relative Motions

L = L(motion of CM) + L (motion relative to CM).  [Eq. (10.9)]
and
T = T (motion of CM) + T (motion relative to CM). [Eq. (10.16)]

The Moment of Inertia Tensor

The angular momentum L and angular velocity @ of a rigid body are related by
L =1w [Eq.(10.42)]

where L and @ must be seen as 3 x 1 columns and I 1s the 3 x 3 moment of inertia
tensor, whose diagonal and off-diagonal elements are defined as

I:cx — E :ma(}:(f + Zj)s etc. and Ix_v = — E m,x,V,. €tC.
o o

Principal Axes

A principal axis of a body (about a point O) is any axis through O with the property
that if @ points along the axis, then L is parallel to w; that is,

L =\w [Eqg: (10.65)]
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Eigen vectors and rotations

sifl O

sih 6

cos 6



Euler angles

3N

Classic Euler angles geometrical definition. The xyz

(fixed) system is shown in blue, the XYZ (rotated)

system is shown in red. The line of nodes (N) is

shown in green
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