Phys 3344: Tuesday 03 November
Office Hours: Wed 5:00-6:00
Grades: scaled

make up homework promptly

else it does not benefit you
Homework #10: re-do by Friday
Ch 11
Ch 13
Ch 14

a tour of cern

“I never vote for a politician,
it only serves to encourage them.”

Vote early and often
... old Chicago saying

| am not a member of any organized
political party. | am a Democrat.
Will Rogers.
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# |DAY |LECTURE: MNOTES: Chpt | TOPIC
1 |TUE 08/25/20 First Class 1 |Newtons Laws
2 |THUR 08/27/20 2 |Projectiles
3 |TUE 09/01/20 3 |[Momentum & Angular Momentum
4 |THUR 09/03/20 4 |Energy
5 |TUE 09/08/20 5 |Oscillations
6 [THUR 09/10/20
7 |TUE 09/15/20
8 |THUR 09/17/20 EXAM 1
9 |TUE 09/22/20 6 |Calculus of Variations
10 |THUR 09/24/20 7 |Lagrange’s Equation
11|TUE 09/29/20
12 |THUR 10/01/20 8 |Two Body Problems
13|TUE 10/06/20
14 |THUR 10/08/20 9 |Non-Inertial Frames

TUE 10/13/20{ Eall Break 10 |Rotational Motion
15 |THUR 10/15/20 EXAM 2
16 |TUE 10/20/20 10 |Rotational Motion
17 |THUR 10/22/20
18 |TUE 10/27/20 11|Coupled Oscillations
19 |THUR 10/29/20
20 |TUE 11/03/20 13 |Hamiltonian Mechanics
21 (THUR 11/05/20 Drop Date
22 |TUE 11/10/20
23 |THUR 11/12/20 EXAM 3
24 |TUE 11/17/20 14 |Collision Theory
25 [THUR 11/19/20
26 |TUE 11/24/20 15 |Special relativity
27 |THUR 11/26/20{ Thanksgiving No Class
28 |TUE 12/01/20 No Class
29 [THUR 12/03/20| Last Class Review

WED Dec 16 FINAL EXAM |Wednesday Dec. 16,2020, 11:30am - 2:30

Adjustments may be made depending on student interests/needs and unplanned events
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Section 11.2  |dentical Springs and Equal Masses

equilibrium equilibrium

Figure 11.1  Two carts attached to fixed walls by the springs labeled &, and
ks, and to each other by k,. The carts’ positions x; and x, are measured from
their respective equilibrium positions.

11.2 Identical Springs and Equal Masses

Iet us continue to examine the two cars of Figure 11.1, but suppose now that
the two masses are equal, m, = my = m, and similarly the three spring constants,
ky = ky = k3 = k. In this case, the matrices M and K defined in (11.5) reduce to

m 0 2k —k
Nl:[ﬂ f’!:l and K_|:—k 2k:|' (11.13)
The matrix (K — *M) of the genr:ralimd3 eigenvalue equation (11.11) becomes
2 2% — mew? —k
(K—wM) = |: R 2 —_mwz] (11.14)

and its determinant is
det(K — ™M) = (2k — mw)? = k% = (k = me’) (3k — ma?).

The two normal freqgencies are determined by the condition that this determinant be
zero and are therefore

T G
m:v'll;k;:n” and w:v"%:w;. (11.15)

These two normal frequencies are the frequencies at which our two carts can oscillate
in purely sinusoidal motion. Notice that the first one, w, is precisely the frequency
of a single mass m on a single spring k. We shall see the reason for this apparent
coincidence in a moment.

?Since there are two solutions for e®, you might think this would give four selutions for
= /e, However, a glance at Equations (11.6) and (11.7) will convince you that +o and —a
constitute the same frequency for the real motion. :

# From now on, T shall refer to (11.11) as the eigenvalue equation, omitting the “generalized.”
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Chapter 11 Coupled Oscillators and Normal Modes

Equation (11.15) tells us the two possible frequencies of our system, but we have
not yet described the corresponding motions. Recall that the actual motion is given by
the column of real numbers x(r) = Re (1) where the complex column z(r) = ae'',
and a is made up of two fixed numbers,

a= |:al‘ ] 7
ay
which must satisfy the eigenvalue equation
(K — o’M)a =0. (11.16)

Now that we know the possible normal frequencies, we must solve this equation for
the vector a for each normal frequency in turn. The sinusoidal motion with any one of
the normal frequencies is called a normal mode, and 1 shall start with the first normal
mode.

The First Normal Mode

If we choose @ equal to the first normal frequency, w; = /k/m, then the matrix
(K — w’M) of (11.14) becomes

(K—me):[_kk “jﬂ (11.17)

(Notice that this matrix has determinant 0, as it should.) Therefore, for this case, the
eigenvalue equation (11.16) reads

1 -11]a
= ﬂ
B
which is equivalent to the two equations
a—a,=0

—ay+a;=0.

Notice that these two equations are actually the same equation, and either one implies
that @, = a, = Ae™'?, say. The complex column z(r) is therefore

] e | A w8
e [1]-[1]

and the corresponding actual motion is given by the real column x(7) = Rez(f) or

ey 1A L
x(t) = |:Xz(f]] = [Ai| cos(ef — §).

() = Acos(wi — &)
Kty = Acos(wit — &)

That is,

} [first normal mode]. (11.18)



Section 11.2  Identical Springs and Equal Masses

Flrsl mode

=N
Figure 11.2  The first normal mode for two equal-mass carts with three
identical springs. The two carts oscillate back and forth with equal

amplitudes and exactly in phase, so that x,() = x,(), and the middle
spring remains at its equilibrium length all the time.
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Figure 11.3  In the first mode, the two positions oscillate sinusoidally,
with equal ampitudes and in phase.

We see that in the first normal mode the two carts oscillate in phase and with the same
amplitude A, as shown in Figure 11.2.

A striking feature of Figure 11.2 s that, because x (1) = x,(t). the middle spring
is neither stretched nor compressed during the oscillations. This means that, for the
first normal mode, the middle spring is actually irrelevant, and each cart oscillates just
as if it were attached to a single spring. This explains why the first normal frequency
@y = +/k/m is the same as for a single cart on a single spring.

Another way to illustrate the motion in the first normal mode is just to plot the two
positions x; and x4 as functions of ¢. This is shown in Figure 11.3.

The Second Normal Mode

The second normal frequency at which our system can oscillate sinusoidally is given
by (11.15) as an = 4/3k/m, which, when substituted into (11.14), gives

2 ~k -k
{K—m:M)_[_k J (11.19)

Thus, for this normal mode, the eigenvalue equation (K — w, >M)a = 0 implies that

[ lla]-e

Chapter 11 Goupled Oscillators and Normal Modes

Second mode

I

Figure 11.4  The second normal mode for two equal-mass carts with
three identical springs. The twao carts oscillate back and forth with equal
amplitudes but exactly out of phase, so that x,{t) = —x,{r) at all times.
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Figure 11.5 In the second mode, the two positions oscillate sinu-
soidally, with equal ampitudes but exactly out of phase.

which implies that a, + a, =0, or a; = —a, = Ae™*%, say. The complex column z(t)

is therefore
z(t) = |:ﬂ'] :Iefa)gl' - [ A ]eriwzr—ﬁl
a -A

and the corresponding actual motion is given by the real column x(t) = Re z(r) or

_[xax]_T A B
x(rj_[xgm]_[_ﬂ]cos(wzr ).

That is,

x(ry = Acos(wy —8)

i) = At = [second normal mode]. (11.20)

‘We see that in the second normal mode the two carts oscillate with the same amplitude
A but exactly out of phase, as shown in the picture of Figure 11.4 and the graphs of
Figure 11.5.

Notice that in the second normal mode, when cart 1 is displaced to the right, carl
2 is displaced an equal distance to the left, and vice versa. This means that when the
outer two springs are stretched (as in Figure 11.4), the middle spring is compressed
by twice as much. Thus, for example, when the left spring is pulling cart 1 to the left,
the middle spring is pushing cart 1, also to the left, with a force that is twice as large.
This means that each cart moves as if it were attached to a single spring with force
constant 3k. In particular, the second normal frequency is w, = 3k /m.



Section 11.2  Ildentical Springs and Equal Masses

The General Solution

We have now found two normal-mode solutions, which we can rewrite as
X(1)=A, [ :] cos(awr — &) and X(1) = A, [_]|i|cos(cuzr - 8,)

where w) and w, are the normal frequencies (11.15). Both of these solutions satisfy the
equation of motion MX = —Kx for any values of the four real constants A}, d;, A,,
and &,. Because the equation of motion is linear and homogeneous, the sum of these
two solutions is also a solution:

x(t) = Al[ﬂcos(wu -8;) + A, [ _I j|COS((Ggf — &), (11.21)

1
Because the equation of motion is really two second-order differential equations for
the two variables x| () and x,(r), its general solution has four constants of integration.
Therefore the solution (11.21), with its four arbitrary constants, is in fact the general
solution. Any solution can be written in the form (11.21), with the constants A4, 4, §,,
and &, determined by the initial conditions.

The general solution (11.21) is hard to visualize and describe. The motion of each
cart is a mixture of the two frequencies, @; and w,. Since w, = /3w, the motion
never repeats itself, except in the special case that one of the constants A4, or A, is
zero (which gives us back one of the normal modes). Figure 11.6 shows graphs of
the two positions in a typical nonnormal mode (with A, =1, A, =07, §, =0, and
&, = /2). About the only simple thing one can say about these graphs is that they
certainly are not very simple!

|

Figure 11.6  In the general solution, both x (1) and x,{1) oscillate with
both of the normal frequencies, producing a quite complicated non-
periodic motion.

Normal Coordinates

We have seen that in any possible motion of our two-cart system, both of the co-
ordinates x(r) and x,(r) vary with time. In the normal modes. their time depen-
dence is simple (sinusoidal), but it is still true that both vary, reflecting that the two
carts are coupled and that one cart cannot move without the other. It is possible
to introduce alternative, so-called normal coordinates which, although less physi-
cally transparent, have the convenient property that each can vary independently of
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Chapter 11 Coupled Oscillators and Normal Modes

the other. This statement is true for any system of coupled oscillators, but is espe-
cially easy to see in the present case of two equal masses joined by three identical
springs.

In place of the coordinates x, and x,. we can characterize the positions of the two
carts by the two normal coordinates

& =4 +x) (11.22)
and
& =30x — xp). (11.23)

The physical significance of the original variables x, and x» (as the positions of the
two carts) is obviously more transparent, but £, and &, serve just as well to label the
configuration of the system. Moreover, if you refer back to (11.18) for the first normal
mode, you will see that in the first mode the new variables are given by

Elg; z A cos(fg.r - 4) } [first normal mode], (11.24)
whereas in the second mode, we see from (11.20) that
i = 0
&HIY = Acos(wt — 8) [second normal mode]. (11.25)

In the first normal mode the new variable ¢, oscillates, but &, remains zero. In
the second mode it is the other way round. In this sense, the new coordinates are
independent — either can oscillate without the other. The general motion of our
system is a superposition of both modes, and in this case both & and &, oscillate,
but &, oscillates at the frequency w, only, and &, at the frequency w, only. In some
more complicated problems, these new normal coordinates represent a considerable
simplification. (See Problems 11.9, 11.10, and 11.11 for some examples and Section
11.7 for further discussion.)

11.3 Two Weakly Coupled Oscillators

In the last section we discussed the oscillations of two equal masses joined by three
equal springs. For this system, the two normal modes were easy to understand and to
visualize, but the nonnormal oscillations were much less so. A system where some of
the nonnormal oscillations are readily visualized is a pair of oscillators which have
the same natural frequency and which are weakly coupled. As an example of such
a system, consider the two identical carts shown in Figure 11,7, which are attached
to their adjacent walls by identical springs (force constants k) and to each other by a
much weaker spring (force constant k5 < k).

We can quickly solve for the normal modes of this system. The mass matrix M
is the same as before. The spring matrix K and the crucial combination (K — M)



11.7 »» [Computer] The most general motion of the two carts of Section 11.2 is given by (11.21),
with the constants A}, A,, §;, and §, determined by the initial conditions. (a) Show that (11.21) can be

rewritten as
. 1 . 1
X(t) = (Bycoswit + Cysinwyt) |:1] + (B, coswrt + C, sin w»ht) [_]] .

This form is usually a little more convenient for matching to given initial conditions. (b) If the carts are
released from rest at positions x;(0) = x,(0) = A, find the coefficients B, B,, C;, and C, and plot x;(#)
and x,(¢). Take A = w; =l and 0 < ¢ < 30 for your plots. (¢} Same as part (b), except that x,(0) = A
but x,(0) = 0.
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Principal Definitions and Equations of Chapter 13

The Hamiltonian

If a system has generalized coordinates q = (g, - - - , g,,), Lagrangian L, and gener-
alized momenta p;, = dL/0q;, its Hamiltonian is defined as

CH=) pdgi— L, (Eq. (13.22)]
=1

always considered as a function of the variables q and p (and possibly 1).

Hamilton’s Equations

The time evolution of a system is given by Hamilton’s equations

. oH
= and p; = ——
ap; aq;

, _ o

q; i=1,---,n]. [Eq.(13.25)]



Chapter 14
Collision
Theory



B e S e B A e B R R T O D S R R e

EXAMPLE 14.1 Shooting Crows in an Oak Tree

A hunter observes 50 crows settling randomly in an oak tree, where he can no
longer see them. Each crow has a cross-sectional area o =~ J ft?, and the oak has
a total area (as seen from the hunter’s position) of 150 square feet. If the hunter
~ fires 60 bullets at random into the tree, about how many crows would he expect
to hit?

This situation closely parallels our simple scattering experiment. The target
density is n,,, = (number of crows)/(area of tree) = 50/150 = 1/3 ft—2. The number
of incident projectiles 1s Ny,. = 60, so, by the analog of (14.2), the expected
number of hits is

L e T e Vo e A A w e w  E T R

Ny = Nig 11y & = 60 (-,j; ft“z) X (% fi?) = 10.

e O s S S R T

BRI RS R e e



EXAMPLE 14.2 Scattering of Neutrons in an Aluminum Foil

If 10,000 neutrons are fired through an aluminum foil 0.1 mm thick and the cross
section of the aluminum nucleus is about 1.5 barns,* how many neutrons will
be scattered? (Specific gravity of aluminum = 2.7.)

The number of scatterings is given by (14.2), and we already know that
N, = 10*ando = 1.5 x 1072® m?, Thus all we need to find is the targetdensity
Ny the number of aluminum nuclei per area of the foil. (Of course, the foil
contains lots of atomic electrons as well, but these do not contribute appreciably
to the scattering of neutrons.) The density of aluminum (mass/volume) is ¢ =
2.7 x 103kg/m?. If we multiply this by the thickness of the foil ( = 10~*m),
this will give the mass per area of the foil, and dividing this by the mass of an
aluminum nucleus (m = 27 atomic mass units), we will have n,,:

7 x 10°kg/m’) x (10~*
m 27 x 1.66 x 10~%7kg

Riay

Substituting into (14.2) we find for the number of scatterings
N,. = Nipenee o = (10%) x (6.0 x 10%*m™2) x (1.5 x 107%m?) = 9.

Here, we used the given cross section o to predict the number N of scatterings
we should observe. Alternatively, we could have used the observed value of N,
to find the cross section o.
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