

1) The orbit of a planet is an ellipse with the Sun at one of the two foci.

2) A line segment joining a planet and the Sun sweeps out equal areas during equal intervals of time.

3) The square of a planet's orbital period is proportional to the cube of the length of the semimajor axis of its orbit.

$$\mu = \frac{m_1 m_2}{m_1 + m_2},$$

$$\mathbf{R} = \frac{m_1 \mathbf{r}_1 + m_2 \mathbf{r}_2}{m_1 + m_2} = \frac{m_1 \mathbf{r}_1 + m_2 \mathbf{r}_2}{M},$$

$$\frac{Orbits}{T = \frac{1}{2}m(r^{2} + r^{2}o^{2})}$$

$$V = V(r) \qquad \text{independent of } \Theta$$

$$L = T - V = \frac{m}{2}r^{2} + \frac{m}{2}r^{2}o^{2} - V(r)$$

$$\frac{2L}{2\Theta} = 0 = P \qquad \frac{2L}{2\Theta} = \text{const} = \frac{mr^{2}\Theta}{ar^{2}\Theta} = L$$

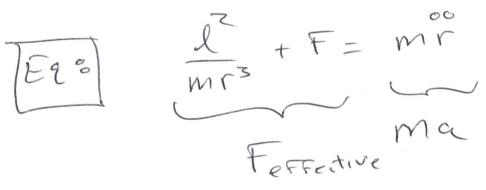
$$\frac{aL}{2r} = mr^{2}\Theta^{2} - \frac{2V(r)}{2r} \qquad \frac{2L}{2r^{2}} = mr$$

$$\frac{aL}{3r} = mr^{2}\Theta^{2} - \frac{2V(r)}{2r} \qquad \frac{2L}{2r^{2}} = mr$$

$$\frac{L^{2}}{mr^{3}} + F - mr^{2} = 0$$

$$\frac{L^{2}}{mr^{2}} + F - mr^{2} = 0$$

$$\frac{L^{2}}{mr^{2}} = F = -\frac{2V(r)}{2r}$$



Not- F	$= -\frac{2V}{2r}$		22
Example: (or Gravity F	$V = -\frac{K}{r^2}$ V=	$\frac{K}{r^2} V = \frac{K}{r} F = F$ $-\frac{K}{r} K = Gr$	$= -\frac{2V}{2r}$
Eq. Foff = Kepler Force	$a = mr = -\frac{k}{r^2} + \frac{l}{m}$ $\frac{\sqrt{k}}{\sqrt{k}} + \frac{l}{\sqrt{k}}$ $\frac{\sqrt{k}}{\sqrt{k}} + \frac{l}{\sqrt{k}}$ $\frac{\sqrt{k}}{\sqrt{k}} + \frac{l}{\sqrt{k}}$ $\frac{\sqrt{k}}{\sqrt{k}} + \frac{l}{\sqrt{k}}$	$F + \frac{2}{mr^3} =$ $F^3 = F$ $F_{gal} =$	Feffective -1/r2
	$F=-\frac{2V}{2V}$	Potentiail V	
Kepler	-K rz	-K r	
Centurfugal	$+l^2$ mr^3	+ l ² ZMr ²	

$$\overline{Enevgy} = \overline{z} \operatorname{mr} \left(\overset{\circ}{r}^{2} + r^{2} \overset{\circ}{\theta}^{2} \right) + V(r)$$

$$\overline{E} = \frac{1}{2} \operatorname{mr}^{\circ} \overset{\circ}{r}^{2} + \frac{l^{2}}{2mr^{2}} + V(r)$$

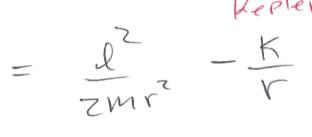
$$\overline{E} = \frac{1}{2} \operatorname{mr}^{\circ} \overset{\circ}{r}^{2} + \frac{l^{2}}{2mr^{2}} + V(r)$$

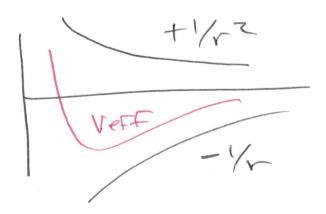
$$\overline{E} = \frac{1}{2} \operatorname{mr}^{\circ} \overset{\circ}{r}^{2} + \frac{l^{2}}{2mr^{2}} + V(r)$$

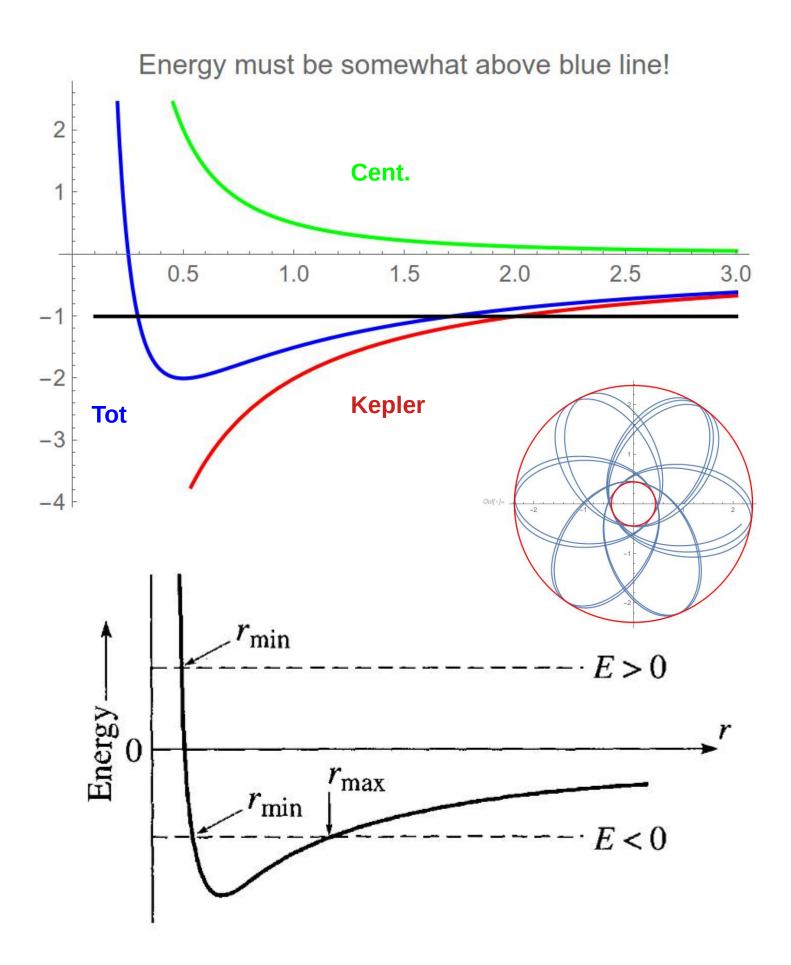
$$\overline{E} = \overline{e} \overline{E} + V(r)$$

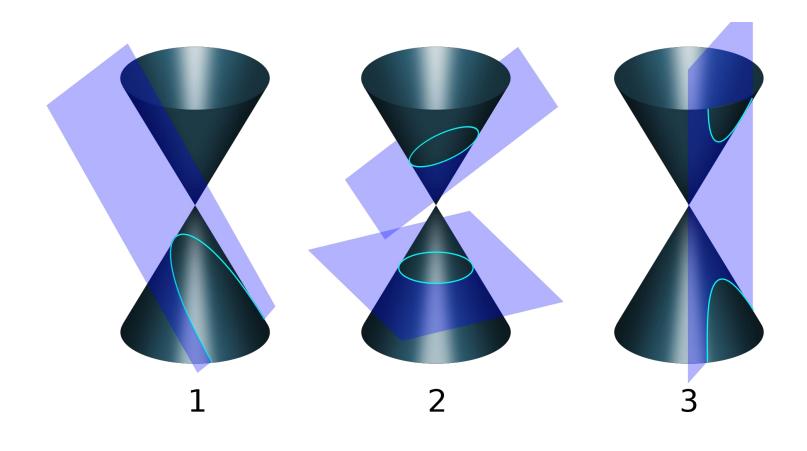
$$\overline{E} = \overline{e} \overline{E} + V(r)$$

$$\overline{E} = \frac{l^{2}}{2mr^{2}} + V(r)$$









$$r(\phi) = \frac{c}{1 + \epsilon \cos \phi},$$

eccentricity	energy	orbit
$\epsilon = 0$	E < 0	circle
$0 < \epsilon < 1$	E < 0	ellipse
$\epsilon = 1$	E = 0	parabola
$\epsilon > 1$	E > 0	hyperbola