Z Masses on a Spring

Solve
$$|K - \omega^2 H| = 0$$

 $K \begin{pmatrix} 1 - 1 \\ -11 \end{pmatrix} - \omega^2 \begin{pmatrix} m & 0 \\ 0 & m \end{pmatrix} = \begin{pmatrix} K - \omega^2 m & -K \\ -K & K - \omega^2 m \end{pmatrix}$
 $(K - \omega^2 m)^2 - K^2 = 0$
 $\omega^2 m [\omega^2 m - 2K] = 0 = P$
 $\omega^2 = 0, \frac{2K}{m}$
Find Eigen Nodes
 $(K - \omega_1^2 H) = 0$
 $K \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} q_1 \\ q_2 \end{pmatrix} = 0 = P$
 $a_1 - a_2 = 0$
 $-a_1 + a_2 = 0$
 $a_1 = q_2$
 $U = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$
 $(K - \omega_2^2 H) = K \begin{pmatrix} 1 - Z & -1 \\ -1 & 1 - Z \end{pmatrix} = -K \begin{pmatrix} 11 \\ 11 \end{pmatrix}$
 $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} q_1 \\ q_2 \end{pmatrix} = 0 = P$
 $u_z = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$
 $U_z = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$
 $U_z = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$
 X_1
 X_2
 X_3
 X_2
 X_2
 X_3
 X_2
 X_2
 X_3
 X_2
 X_2
 X_3
 X_2
 X_3
 X_2
 X_3
 X_2
 X_3
 X_2
 X_3
 X_3
 X_4
 X_2
 X_3
 X_4
 X_2
 X_3
 X_4
 X_2
 X_4
 X_2
 X_4
 X

$$\frac{Two}{K_{1}} \underbrace{K_{2}}_{X_{1}} \underbrace{K_{2}}_{X_{1}} \underbrace{K_{2}}_{X_{2}} \underbrace{K_{3}}_{X_{2}} \underbrace{K_{3}}_{X_{1}} \underbrace{K_{1} = K_{2} =$$

Problem 4 [30 Points]

A simple pendulum (mass M and lengh L) is suspended from a cart (mass m) that can oscillate on the end of a spring of force constant k, as shown in the figure below.

- (a) Assuming that the angle ϕ remains small, write down the system's Lagrangian (10 points) and the equations of motion for x and ϕ (5 points).
- (b) Assuming that m = M = L = g = 1 and k = 2 (all in appropriate units) find the normal frequencies (5 points), the normal mode eigenvectors describing the velocities of the two masses undergoing normal oscillations (5 points), and describe the motion of the corresponding normal modes (5 points).

Coupled Hotein X
Sin
$$\Theta = \Theta$$

 $V = \frac{1}{2} K X^{2} + \frac{1}{2} H (X + L \Theta)^{2}$
 $V = \frac{1}{2} K X^{2} + \frac{1}{2} H (X + L \Theta)^{2}$
 $V = \frac{1}{2} K X^{2} + \frac{1}{2} H (X + L \Theta)^{2}$
 $E horizontal velocity of M
Tar small angles, we issure
Vertical velocity of M
 $V = \frac{1}{2} K X^{2} + M g L \Theta^{2}$
 $L = T - V$
 $V = \frac{1}{2} K X^{2} + M g L \Theta^{2}$
 $L = T - V$
 $V = \frac{1}{2} K X^{2} + M g L \Theta^{2}$
 $L = T - V$
 $V = \frac{1}{2} K X^{2} + M g L \Theta^{2}$
 $L = T - V$
 $V = \frac{1}{2} K X^{2} + M g L \Theta^{2}$
 $L = T - V$
 $V = \frac{1}{2} K X^{2} + M g L \Theta^{2}$
 $L = T - V$
 $V = \frac{1}{2} K X^{2} + M g L \Theta^{2}$
 $L = T - V$
 $V = \frac{1}{2} K X^{2} + M g L \Theta^{2}$
 $V = \frac{1}{2} K X^{2} + M g L \Theta^{2}$
 $V = \frac{1}{2} K X^{2} + M g L \Theta^{2}$
 $V = \frac{1}{2} K X^{2} + M g L \Theta^{2}$
 $V = \frac{1}{2} K X^{2} + M g L \Theta^{2}$
 $V = \frac{1}{2} K X^{2} + M g L \Theta^{2}$
 $V = \frac{1}{2} K X^{2} + M g L \Theta^{2}$
 $V = \frac{1}{2} K X^{2} + M g L \Theta^{2}$
 $V = \frac{1}{2} K X^{2} + M g L \Theta^{2}$
 $V = \frac{1}{2} K X^{2} + M g L \Theta^{2}$
 $V = \frac{1}{2} K X^{2} + M g L \Theta^{2}$
 $V = \frac{1}{2} K X^{2} + M g L \Theta^{2}$
 $V = \frac{1}{2} K X^{2} + M g L \Theta^{2}$
 $V = \frac{1}{2} K X^{2} + M g L \Theta^{2}$
 $V = \frac{1}{2} K X^{2} + M g L \Theta^{2}$
 $V = \frac{1}{2} K X^{2} + M g L \Theta^{2}$
 $V = \frac{1}{2} K X^{2} + M g L \Theta^{2}$
 $V = \frac{1}{2} K X^{2} + M g L \Theta^{2}$
 $V = \frac{1}{2} K X^{2} + M g L \Theta^{2}$
 $V = \frac{1}{2} K X^{2} + M g L \Theta^{2}$
 $V = \frac{1}{2} K X^{2} + M G^{2}$
 $V = \frac{1}{2} K X^{2} + M G^{2} + M G^{2}$$

Sp+5

Find Normal Years

$$\frac{1}{23}$$

$$\frac{1}{24}$$

$$\frac{1}{23}$$

$$\frac{1}{23}$$

$$\frac{1}{23}$$

$$\frac{1}{23}$$

$$\frac{1}{23}$$

$$\frac{1}{23}$$

$$\frac{1}{23}$$

$$\frac{1}{23}$$

$$\frac{1}{24}$$

$$\frac{1}{23}$$

Spts

SPts

Problem 2 [20 Points]

A particle of mass M at rest decays into a particle of mass m and a massless particle. Find

- (a) (10 points) the total energy of the massive decay product
- (b) (10 points) the momentum of the massless decay product

$$\frac{\#2}{Before} : P_{0} = (H \circ 00)$$

$$S = P_{0}^{2} = H^{2}$$

$$\frac{Affer}{P_{1}} = (E \circ 0 P) \qquad E^{2} - P^{2} = m^{2}$$

$$P_{2} = (P \circ 0 - P)$$

$$P_{12} = (E + P, 000)$$

$$S = P_{12}^{2} = (E + P)^{2}$$

$$M^{2} = (E + P)^{2}$$

$$M = (E + P)$$

$$P = H - E \qquad E^{2} - P^{2} = m^{2}$$

$$E^{2} - (H - E)^{2} = m^{2}$$

$$E^{2} - H^{2} + 2HE + E^{2} = m^{2}$$

$$E^{2} - H^{2} + 2HE + E^{2} = m^{2}$$

$$E = \left(\frac{H^{2} + m^{2}}{2H}\right) c^{2}$$

$$= P \qquad P = H - E = \left(\frac{H^{2} - m^{2}}{2H}\right) c$$

Note Geneval Process

$$\begin{array}{l} \underbrace{P_{z}}{P_{z}} & \underbrace{P_{l}}{P_{l}} \\
P_{l} = \left(E_{l} & 00 + P\right) & E_{l}^{2} - P^{2} = m_{l}^{2} \\
P_{z} = \left(E_{z} & 00 - P\right) & E_{z}^{2} - P^{2} = m_{z}^{2} \\
E_{l} = & \underbrace{S \pm m_{l}^{2} \mp m_{z}^{2}}{Z \, IS} \\
P = & \underbrace{A(S, m_{l}^{2}, m_{z}^{2})}{Z \, IS} \\
A(a, b, c) = \int a^{2} + b^{2} + c^{2} - 2(ab + bc + ca)
\end{array}$$

$$\frac{Check}{E_{1}} = \frac{M^{2} + m_{1}^{2}}{ZM} = P = \frac{M^{2} - m_{1}^{2}}{ZM}$$

$$\frac{Check}{E_{2}} = \frac{M^{2} + m_{1}^{2}}{ZM} = P$$

$$\frac{E_{2}}{ZM} = \frac{M^{2} - m_{1}^{2}}{ZM} = P$$

$$Check!$$

	18
Oreens touctions :	
$Problem: D F(x) = \Phi(x)$	
Problem: $DG(x) = S(x)$	
or $\mathbb{D} G(x-x') = S(x-x')$	
If we solve easier problem, we can	
Solve hand problem, because :	
$F(x) = \int_{-\infty}^{\infty} G(x-x') \varphi(x') dx'$	
$\frac{Check}{D} = \int_{\infty} DG(x-x') \varphi(x') dx'$	
S(x-x')	
$= \int_{-\infty}^{\infty} clx' S(x-x') \varphi(x')$	
$\mathbb{D} F(x) = \Phi(x)$	
QED.	

Continuous Fourier Transform:

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dw \ g(w) \ e + iwx$$

$$g(w) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx \ F(x) \ e$$

$$\frac{CLeck}{F(x)} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dw \begin{cases} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx' F(x') e^{-i\omega x} \\ \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx' F(x') e^{-i\omega x} \end{cases}$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} dx' F(x') \int_{-\infty}^{\infty} dw e^{-i\omega x} \\ \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx' F(x') \int_{-\infty}^{\infty} dx' F(x') \\ \frac{1}{\sqrt{2\pi}} \int_{$$

 $\frac{Note}{ZT} S(X-X') = Sdw e$

Mow, how to solve easy problem.
Use Fourier transforms.
Turns differential eq = P algebraic eq.

$$EX.$$
 (a D² + bD+c) F(x) = S(x)
Use: F(x) = $\frac{1}{12\pi} \int_{-\infty}^{\infty} dw g(w) e^{-c'wx}$

$$S(X) = \frac{1}{2\pi} \int clw e$$

 $S(X) = \frac{1}{2\pi} \int clw e$
 $S(X) = \frac{1}{2\pi} \int clw e$
 $S(X) = \frac{1}{2\pi} \int clw e$

$$\begin{array}{l} & & & & & -c'\omega x \\ \left(aD^{2}+bD+c\right)\frac{1}{\sqrt{2\pi}}\int dw \ g(\omega) \ e \\ & & & \\ & = \frac{1}{\sqrt{2\pi}}\int dw \ g(\omega) \left[-\omega^{2}a - c\omega b+c\right] e \end{array}$$

$$= \frac{1}{2\pi} \int dw e$$

$$\tilde{\omega} = 7 \quad g(\omega) \left[-\omega^2 q - i\omega b + c \right] = \frac{1}{\sqrt{2\pi}}$$

$$g(\omega) = \frac{1}{\sqrt{2\pi}} \left[-\omega^2 a - c'\omega b + c \right]$$

Full solution: $f(x) = \frac{1}{\sqrt{2\pi}} \int dw \quad g(w) \quad e$ $= \frac{1}{\sqrt{2\pi}} \int dw \quad e$ $[-w^2 a - c'wb + c]$ 110

$$\frac{Problem \#1}{T = \frac{1}{2}m_{1}x^{2} + \frac{1}{2}I\theta^{2}}$$

$$V = Mgh = -MgX \sin x$$

$$L = T - V = \frac{M_{1}x^{2} + \frac{1}{2}\theta^{2} + MgX \sin x}{\frac{1}{2}x^{2} + \frac{1}{2}\theta^{2} + MgX \sin x}$$

$$I = \frac{1}{2}m_{2}r^{2}$$

$$I = Km_{2}r^{2}$$

$$\frac{\partial L}{\partial X} = mgSin \times \frac{\partial L}{\partial X} = m_{1}X \frac{\partial L}{\partial 0} = 0 \frac{\partial L}{\partial \theta} = I\theta$$

$$Gonstraints X = r\theta \implies F = X - r\theta = 0$$

$$\frac{\partial F}{\partial X} = +1 \quad \frac{\partial F}{\partial \theta} = -\Gamma \qquad \frac{\partial AL}{\partial x^{2}} = \frac{\partial A}{\partial y}$$

$$= K m_2 / m_1 + K m_2)$$

Forre Method
$$F = ma$$

 $F = ma$
 $F = ma$
 $F = ma$
 $T = Tx$
 $mg \approx mg \sin x$
 $T = Tx$
 $T = Tx$

$$(T) (T) \rightarrow M_{1}gsin \times - Km_{2}a = M_{1}a$$

$$\underbrace{M_{1}gsin \times}_{m_{1}+Km_{2}} = a$$

$$T = Km_{2}a = K \underbrace{M_{1}M_{2}gsin \times}_{m_{1}+Km_{2}}$$

Problem #2

$$E_{befine} = E_{Affer}$$

$$U = T_{enrysy}$$

$$\frac{1}{2}KX^{2} = \frac{1}{2}MU^{2} + \frac{1}{2}TW$$

$$= \frac{1}{2}MU^{2} + \frac{1}{2}TW^{2}$$

$$\frac{1}{2}KX^{2} = \frac{1}{2}MU^{2}(1+Y)$$

$$\frac{1}{2}KX^{2} = \frac{1}{2}MU^{2}(1+Y)$$

$$T = \frac{1}{2}MX^{2} + \frac{1}{2}YMX^{2} = \frac{1}{2}M(1+Y)X^{2}$$

$$U = \frac{1}{2}KX^{2}$$

$$Q B_{12} = B_1 + B_7 = 0.94 < 1$$

 $1 + B_1 B_2$

$$S = S$$

 $4E^{2} = (2M + M)^{2}$
 $ZE = ZM + M$
 $E = ZM + M = Z + 90 = 46 \text{ GeV}$
 $Z = Z = 2 + 90$

$$\frac{Befire}{P_1 = (E, oo P)} \rightarrow F E^2 P^2 = m^2$$

$$P_2 = (M, ooo)$$

$$P_{12} = (E+M, oo P)$$

$$S = P_{12}^2 = (E+M)^2 - P^2 = m^2$$

$$= E^2 + ZEM + m^2 - P^2$$

$$S = ZEM + Zm^2$$

$$S_{AFter} = (Zm + M)^2 Same as before$$

$$S = S = P ZEM + Zm^2 = (Zm + M)^2$$

$$E = (M + Zm)^2 - Zm^2 = 4Z31 GeV$$

,

Lab frame
$$P_i = (E \circ o P)$$

Before: $P_z = (M \circ o \circ o)$
 $P_{iz} = (E + M, o \circ P)$
 $S = ZEM + ZM^2$

$$S=S = 7 \quad ZEM + ZM^{2} = 16 m^{2}$$
$$ZEM = 14 m^{2}$$
$$E = 7M \stackrel{\circ}{=} 7 GeV$$