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Classical Mechanics Core Proficiency Exam
October 2021

Problems provided by the Physics Faculty.
Exam assembled by the CPE Committee

Instructions

The exam consists of two longer questions and two shorter questions. 
All four problems will be graded. You have two hours to work on the solutions. 
You are allowed one textbook of your choice, one math reference, and a calculator 
(no cell phone calculator allowed)  .   

Write your personal identifier (e.g. name, number, etc.) on the cover sheet of this exam.

We will scan the exams to PDF, so please write only on one side of the page.
Sort your copy of the exam together with your scratch paper (exam on top) with the problems in
numerical order. You may wish to number the pages so we can check the scanner did not miss a
page. 

Problem Points Score Final Score

1 20

2 20

3 30

4 30

Total 100
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Problem #1 (20 points) 
In the middle of a level piece of ground, a tower of height
h is constructed.  A cannon with  muzzle speed v0 is
carried to the top of the tower.  Assume that the
acceleration due to gravity is a constant g, and neglect air
resistance.  Express all answers in terms of the given
quantities. Find the maximum range R of the cannon ball.

Problem #2 (20 points) 
In galaxies like our own, the visible stars and gas appear to be embedded in a much more massive cloud of 
invisible “dark matter” that interacts little if at all with ordinary matter and electromagnetic radiation. If the dark
matter consists of X-particles of mass M, and if these particles possess non-gravitational interactions of some 
kind, there are several ways that we might detect them.

We may try to produce dark matter particles in an electron-positron collider, in which electrons and positrons of
unequal lab frame energies E1 and E2 collide head-on. If an electron-positron collision produces a pair of X’s 
via e++e− → X+X, and assuming that the energies involved are large enough that we can neglect the masses of 
the electrons and positrons, what is the largest mass M of the X particle that this collider can produce? 

Problem #3 (30 points) 
Two pendula, each of which consists of a weightless
rigid rod length of L1=L2=L and masses m1=m2=m
are connected at their endpoints by a spring with
spring constant k. Consider only small displacements
from equilibrium. 

a) (10 points) Write down the Lagrangian, and the
Lagrange equations of motion. 

b) (10 points) What are the normal modes of this
system AND frequencies of the normal modes? 
Briefly describe these modes. 

c) (10 points) At t=0 the right pendulum is displaced by an angle θ2 to the right while the left pendulum remains 
vertical (θ1=0). Both pendula are released from rest. Describe the subsequent motion.



Maximum Range of a Projectile Launched from a Height—C.E. Mungan, Spring 2003

reference: TPT 41:132 (March 2003)

Find the launch angle q and maximum range R of a projectile launched from height h at speed u.

The basic equations of kinematics at the landing point after flight time T are
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vertically and
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horizontally. Substitute Eq. (2) for T into (1) and convert from rectangular to polar components
to get
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Maximize R by differentiating this expression with respect to q and putting dR d/ q = 0 to obtain
an expression for the optimum launch angle,
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This implies cos ( ) /2 2 2 1 2q = + -h h R  and sin ( ) /2 2 2 1 2q = + -R h R . Substitute these into Eq. (3)
to obtain the maximum range,
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Equations (4) and (5) can be normalized for plotting purposes in terms of
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the maximum range for a surface-to-surface projectile (i.e., when h = 0), to get the normalized
range
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These two equations are plotted below as a function of the normalized launch height h R/ 0 .

As expected, R R= 0 and q = 45˚ when h = 0. In the other limit, R hµ 1 2/  and q Æ 0˚ as h Æ • .
More reasonably, notice that if you launch from a height equal to 1.5 times your surface range,
you can get the projectile to go twice as far, provided you launch it at 26.6˚ (half of a 3–4–5
triangle angle).
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Problem #4 (30 points) 
An object of mass m is orbiting around another object of mass M under a central potential V=V(r), where r is 
the distance between two objects. Here, we assume m<<M and the angular position of m is θ.

a) (8 points) Write the Lagrangian of the mass m in terms of r and θ, and obtain the equations of the motion. 
Show that the angular momentum L and the areal velocity (the area swept out by the radius vector per unit time)
are conserved. 

b) (8 points) Given the angular momentum L, derive the expression for the effective potential Veff(r) subject to 
mass m as a function of r. 

c) (8 points) Let us assume that V(r) = k rn . Find the condition of n and k such that the orbit can be 

circular. Derive the radius R (R > 0) of this circular orbit in terms of k, n, and L.

d) (6 points) Find the conditions on n and k such that the circular orbit is stable under perturbation in the radial 
direction.



3. a) As the reduced mass µ = M ·m
M+m

' m, the Lagrangian L is given by

L =
1

2
m(ṙ2 + r2θ̇2)− V (r) (20)

The equations of the motion satisfies
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The angular momentum l = mr2θ̇ satisfies l̇ = 0, therefore it is conserved.
The areal velocity Ȧ = d

dt

(
1
2
r2θ̇
)

= 0, therefore it is also conserved.

3. b) Using l = mr2θ̇,
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)
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Since mr̈ = −∂Veff
∂r

, the effective potential Veff is given by

Veff (r) = V (r) +
l2

2mr2
. (24)

3. c) When V (r) = krn, the condition for the circular orbit can be satisfied
if r̈ = 0 at the orbit radius R (R > 0):
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The above equation can be satisfied when nk > 0 (n 6= −2) and the radius
R is given by
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3. d) The condition for the stability is given by d2

dr2
Veff (r)
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> 0. Using

the relation nkRn−2 = l2

mR4 ,
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The above condition is satisfied when n > −2 and nk > 0.
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