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to the world. That was three centuries ago, and ever since then
the best mathematicians in each country have tried to reconstruct
the proof that Fermat had in mind when he wrote his marginal
note. But up to the present time no proof has been discovered.
To be sure, considerable progress has been made toward the
ultimate goal, and an entirely new branch of mathematics, the
so-called “theory of ideals,” has been created in attempts to
prove Fermat’s theorem. Euler demonstrated the impossibility of
integer solution of the equations: x®+y*=2z* and x*+y*=2%,
Dirichlet proved the same for the equation: x°+y%=2° and
through the combined efforts of several mathematicians we now
have proofs that no solution of the Fermat equation is possible
when n has any value smaller than 269. Yet no general proof,
good for any values of the exponent n, has ever been achieved,
and there is a growing suspicion that Fermat himself either did
not have any proof or made a mistake in it. The problem became
especially popular when a prize of a hundred thousand German
marks was offered for its solution, though of course all the efforts
of money-seeking amateurs did not accomplish anything.

The possibility, of course, always remains that the theorem is
wrong and that an example can be found in which the sum of two
equal high powers of two integers is equal to the same power of a
third integer. But since in looking for such an example one must
now use only exponents larger than 269, the search is not an
easy one.

2. THE MYSTERIOUS \/—1

Let us now do a little advanced arithmetic. Two times two are
four, three times three are nine, four times four are sixteen, and
five times five are twenty-five. Therefore: the square root of four
is two, the square root of nine is three, the square root of sixteen
is four, and the square root of twenty-five is five.*

But what would be the square root of a negative number?

Have expressions like \/—5 and \/—1 any meaning?

4]t is also easy to find the square roots of many other numbers. Thus,

for example, v/5=2.236 . . . . because: (2.236 ... .)X (2236 ... .)
=5.000....and \/7.8=2.702 .. .. because: (2.702....)%X(2702....)

=7.300....
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If vou try to figure it out in a rational way, you will undoubt-
edly come to the conclusion that the above expressions make no
sense at all. To quote the words of the twelfth century mathema-
tician Brahmin Bhaskara: “The square of a positive number, as
also that of a negative number, is positive. Hence the square root
of a positive number is twofold, positive and negative. There is
no square root of a negative number, for a negative number is
not a square.”

But mathematicians are obstinate people, and when something
that seems to make no sense keeps popping up in their formulas,
they will do their best to put sense into it. And the square roots
of negative numbers certainly do keep popping up in all kinds
of places, whether in the simple arithmetical questions that occu-
pied mathematicians of the past, or in the twentieth century
problem of unification of space and time in the frame of the
theory of relativity.

The brave man who first put on paper a formula that included
the apparently meaningless square root of a negative number
was the sixteenth century Italian mathematician Cardan. In dis-
cussing the possibility of splitting the number 10 into two parts
the product of which would be 40, he showed that, although this
problem does not have any rational solution, one could get the
answer in the form of two impossible mathematical expressions:
5-++/=T5 and 5—/=T55

Cardan wrote the above lines with the reservation that the
thing is meaningless, fictitious, and imaginary, but still he wrote
them.

And if one dares to write square roots of negatives, imaginary
as they may be, the problem of splitting the number 10 into the
two desired parts can be solved. Once the ice was broken the
square roots of negative numbers, or imaginary numbers as they
were called after one of Cardan’s epithets, were used by various
mathematicians more and more frequently, although always with
great reservations and due excuses. In the book on algebra pub-

& Thmoof follows:__

(5+/—=15)+(5—/—15)=5+5=10and
(5+V—15)X(5—V=15)=(5X5)+5v/-15-5v=5—(v/=15X /=15)
=(5X5)—(—15)=25+15=40.
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lished in 1770 by the famous German mathematician Leonard
Euler we find a large number of applications of imaginary num-
bers, mitigated however, by the comment: “All such expressions

as \/—1, V/ =2, etc. are impossible or imaginary numbers, since
they represent roots of negative quantities, and of such numbers
we may truly assert that they are neither nothing, nor greater
than nothing, nor less than nothing, which necessarily constitutes
them imaginary or impossible.”

But in spite of all these abuses and excuses imaginary numbers
soon became as unavoidable in mathematics as fractions, or radi-
cals, and one could practically not get anywhere without using
them.

The family of imaginary numbers represents, so to speak, a
fictitious mirror image of the ordinary or real numbers, and,
exactly in the same way as one can produce all real numbers
starting with the basic number 1, one can also build up all
imaginary numbers from the basic imaginary unit \/—1, which is
usually denoted by the symbol i.

It is easy to see that \/ —9=1/9%~/—1=3i; V—=T=\/7T\/—~1
=2.646 . . . i etc., so that each ordinary real number has its
imaginary double. One can also combine real and imaginary
numbers to make single expressions such as 5+\/=15=>5+1i V15
as it was first done by Cardan. Such hybrid forms are usually
known as complex numbers.

For well over two centuries after imaginary numbers broke
into the domain of mathematics they remained enveloped by a
veil of mystery and incredibility until finally they were given a
simple geometrical interpretation by two amateur mathemati-
cians: a Norwegian surveyor by the name of Wessel and a
Parisian bookkeeper, Robert Argand.

According to their interpretation a complex number, as for
example 3+4i, may be represented as in Figure 10, in which 3
corresponds to the horizontal distance, and 4 to the vertical,
or ordinate.

Indeed all ordinary real numbers (positive or negative) may
be represented as corresponding to the points on the horizontal
axis, whereas all purely imaginary ones are represented by the
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points on the vertical axis. When we multiply a real number,
say 3, representing a point on the horizontal axis, by the imagi-
nary unit { we obtain the purely imaginary number 3i, which
must be plotted on the vertical axis. Hence, the multiplication
by i is geometrically equivalent to a counterclockwise rotation
by a right angle. (See Figure 10).

IMacinary
4 Axis
ouh sscsus st nuyaan 3*"‘
et - N |
]9,
!
: : Reav Axis
s L s s s e e L A |
1
Ficure 10

If now we multiply 8i once more by {, we must turn the thing
by another 90 degrees, so that the resulting point is again brought
back to the horizontal axis, but is now located on the negative
side. Hence,

3ixi=38i?=-38, or #*=~1.

Thus the statement that the “square of i is equal to —1” is a
much more understandable statement than ‘turning twice by a
vight angle (both turns counterclockwise) you will face in the
opposite direction.”

The same rule also applies, of course, to hybrid complex num-
bers. Multiplying 8+ 4i by i we get:

(3+4i) i=8i+42=3i—4= —4+3i.

And as you can see at once from Figure 10, the point —4+3¢
corresponds to the point 3+4i, which is turned counterclockwise
by 90 degrees around the origin. Similarly the multiplication by
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—1i is nothing but the clockwise rotation around the origin, as
can be seen from Figure 10.

If you still feel a veil of mystery surrounding imaginary num-
bers you will probably be able to disperse it by working out a
simple problem in which they have practical application.

There was a young and adventurous man who found among
his great-grandfather’s papers a piece of parchment that revealed
the location of a hidden treasure. The instructions read:

“Sail to ______ North latitude and _______ West longitude®
where thou wilt find a deserted island. There lieth a large
meadow, not pent, on the north shore of the island where stand-
eth a lonely oak and a lonely pine.” There thou wilt see also an
old gallows on which we once were wont to hang traitors. Start
thou from the gallows and walk to the oak counting thy steps.
At the oak thou must turn right by a right angle and take the
same number of steps. Put here a spike in the ground. Now must
thou return to the gallows and walk to the pine counting thy
steps. At the pine thou must turn left by a right angle and see
that thou takest the same number of steps, and put another spike
into the ground. Dig halfway between the spikes; the treasure
is there,”

The instructions were quite clear and explicit, so our young
man chartered a ship and sailed to the South Seas. He found the
island, the field, the oak and the pine, but to his great sorrow the
gallows was gone. Too long a time had passed since the docu-
ment had been written; rain and sun and wind had disintegrated
the wood and returned it to the soil, leaving no trace even of the
place where it once had stood.

Our adventurous young man fell into despair, then in an angry
frenzy began to dig at random all over the field. But all his efforts
were in vain; the island was too big! So he sailed back with
empty hands. And the treasure is probably still there.

A sad story, but what is sadder still is the fact that the fellow
might have had the treasure, if only he had known a bit about

8 The actual figures of longitude and latitude were given in the document
but are omitted in this text, in order not to give away the secret.

? The names of the trees are also changed for the same reason as above.
Obvi((l)usly there would be other varieties of trees on a tropical treasure
island.
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mathematics, and specifically the use of imaginary numbers. Let
us see if we can find the treasure for him, even though it is too
late to do him any good.
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Treasure hunt with imaginary numbers.

Consider the island as a plane of complex numbers; draw one
axis (the real one) through the base of the two trees, and
another axis (the imaginary one) at right angles to the first,
through a point half way between the trees (Figure 11). Taking
one half of the distance between the trees as our unit of length,
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we can say that the oak is located at the point —1 on the real
axis, and the pine at the point +1. We do not know where the
gallows was so let us denote its hypothetical location by the
Greek letter T (capital gamma), which even looks like a gallows.
Since the gallows was not necessarily on one of the two axes
I must be considered as a complex number: I'=a+ bi, in which
the meaning of @ and b is explained by Figure 11.

Now let us do some simple calculations remembering the rules
of imaginary multiplication as stated above. If the gallows is at T
and the oak at —1, their separation in distance and direction
may be denoted by (—1)—T'=—(14T). Similarly the separa-
tion of the gallows and the pine is 1—T. To turn these two
distances by right angles clockwise (to the right) and counter-
clockwise (to the left) we must, according to the above rules
multiply them by —i and by i, thus finding the location at which
we must place our two spikes as follows:

first spike: (—i)[—(14+T)]+1=i(*+1)—1
second spike: (+i)(1-T)—-1=i(1—-T)+1

Since the treasure is halfway between the spikes, we must now
find one half the sum of the two above complex numbers. We get:

(r+1)+1+i(1-1)—1] =4[ +iT+i+14+i—iT—1]
=3(+2i) = +i.

We now see that the unknown position of the gallows denoted
by I fell out of our calculations somewhere along the way, and
that, regardless of where the gallows stood, the treasure must be
located at the point +i.

And so, if our adventurous young man could have done this
simple bit of mathematics, he would not have needed to dig up
the entire island, but would have looked for the treasure at the
point indicated by the cross in Figure 11, and there would have
found the treasure.

If you still do not believe that it is absolutely unnecessary to
know the position of the gallows in order to find the treasure,
mark on a sheet of paper the positions of two trees, and try to
carry out the instructions given in the message on the parchment
by assuming several different positions for the gallows. You will
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always get the same point, corresponding to the number +i on
the complex plane!

Another hidden treasure that was found by using the imaginary
square root of —1 was the astonishing discovery that our ordi-
nary three-dimensional space and time can be united into one
four-dimensional picture governed by the rules of four-dimen-
sional geometry. But we shall come back to this discovery in one
of the following chapters, in which we discuss the ideas of Albert
Einstein and his theory of relativity.



