Homework #5: Phys 4321: Prof. Olness Spring 2025

1) Consider a circuit with a resistor (R), capacitor (C), or inductor (L), and this is driven by an AC source: V sin[w t]. (If you prefer, you can use an exponential form.) For an RLC circuit with R=20 ohms, C=10uF, L=100mH, and V=100 volts plot the current as a function of w.

a) Find the maximum value of the current.

b) Also, find the values of w where the current is ¹/₂ the maximum value.

c) Overlay plots for R=20,10,5 ohms and comment.

d) Is there a value of w that will make the current go to infinity???

2) a)Design an RLC circuit to tune to a particular station/frequency. Choose L and C sensibly.

b) Determine R_0 so that the current at the neighboring station is =10% of the peak.

- c) Plot the current vs. R₀. Find the FWHM of the signal.
- d) Plot the current vs. R_0 , $2R_0$, $(1/2)R_0$.

Damondre: Pick an AM radio station Josh: Pick an FM radio station Luke: Pick a UHF TV station Burak: Your choice ... maybe a 2.5Gh WiFi band

3) Fourier Series:

a) Working on the Interval $[0, 2\pi]$, using exponentials, compute the Fourier coefficients of the step function: f=1 for $[0, \pi]$, and f=1 for $[\pi, 2\pi]$.

b) compute the Sin and Cos coefficients.

c) Plot the Fourier expansion of Sin+Cos with {1,3,5, 10, 100} terms.

d) Repeat with just the Sin terms.

e) Repeat with just the Cos terms.

4) Fourier Series:

Repeat #3 for a sawtooth function: f[x] = x for $[0, 2\pi]$ periodic.